
Cross-platform 
Localization for 
Native Mobile 
Apps with 
Xamarin

—
Christopher Miller

www.allitebooks.com

http://www.allitebooks.org


Cross-platform 
Localization for Native 

Mobile Apps with 
Xamarin

Christopher Miller

www.allitebooks.com

http://www.allitebooks.org


Cross-platform Localization for Native Mobile Apps with Xamarin

Christopher Miller 				  
Slingerlands, New York					   
USA			 

ISBN-13 (pbk): 978-1-4842-2465-6		  ISBN-13 (electronic): 978-1-4842-2466-3
DOI 10.1007/978-1-4842-2466-3

Library of Congress Control Number: 2016961811

Copyright © 2017 by Christopher Miller

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage 
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or 
hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are 
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director: Welmoed Spahr
Lead Editor: Todd Green
Development Editor: Laura Berendson
Technical Reviewer: Craig Dunn and Cameron Lerum
Editorial Board: Steve Anglin, Pramila Balan, Laura Berendson, Aaron Black, Louise Corrigan,  

Jonathan Gennick, Todd Green, Robert Hutchinson, Celestin Suresh John, Nikhil Karkal,  
James Markham, Susan McDermott, Matthew Moodie, Natalie Pao, Gwenan Spearing

Coordinating Editor: Jill Balzano
Copy Editor: Nancy Sixsmith
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail  
orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC and the 
sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance 
Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com. 

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. 
eBook versions and licenses are also available for most titles. For more information, reference our Special 
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text are available to  
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to  
www.apress.com/source-code/. Readers can also access source code at SpringerLink in the Supplementary 
Material section for each chapter.

Printed on acid-free paper

www.allitebooks.com

orders-ny@springer-sbm.com
www.springer.com
rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.allitebooks.org


I dedicate this book to my wife, Anne, and to my daughters, Kathryn and Laura.  
They are what made this book possible.

www.allitebooks.com

http://www.allitebooks.org


v

Contents at a Glance

About the Author������������������������������������������������������������������������������������������������������ xi

Acknowledgments�������������������������������������������������������������������������������������������������� xiii

■■Chapter 1: What Is Localization?���������������������������������������������������������������������������� 1

■■Chapter 2: Working with Resource Files�������������������������������������������������������������� 21

■■Chapter 3: Working with Multilingual App Toolkit������������������������������������������������ 31

■■Chapter 4: Island Menu Application��������������������������������������������������������������������� 49

■■Chapter 5: Additional Resources�������������������������������������������������������������������������� 97

Index���������������������������������������������������������������������������������������������������������������������� 111

www.allitebooks.com

http://www.allitebooks.org


vii

Contents

About the Author������������������������������������������������������������������������������������������������������ xi

Acknowledgments�������������������������������������������������������������������������������������������������� xiii

■■Chapter 1: What Is Localization?���������������������������������������������������������������������������� 1

What Is Localization, and Why Should You Pay for it?������������������������������������������������������� 1

Internationalization���������������������������������������������������������������������������������������������������������������������������������� 1

Localization��������������������������������������������������������������������������������������������������������������������������������������������� 2

Why Do You Want to Do This?�������������������������������������������������������������������������������������������� 2

Global Marketplace���������������������������������������������������������������������������������������������������������������������������������� 2

Let’s Talk About the Numbers������������������������������������������������������������������������������������������������������������������ 2

Other Reasons for Localizing an App������������������������������������������������������������������������������������������������������� 5

Identifying Language and Culture������������������������������������������������������������������������������������� 6

Where Does the Language String Come From?��������������������������������������������������������������������������������������� 9

Other Things to Consider������������������������������������������������������������������������������������������������������������������������� 9

Which Languages Do You Need to Support?�������������������������������������������������������������������������������������������� 9

What’s Involved with Translation?����������������������������������������������������������������������������������� 10

Translate Sentences, Not Words������������������������������������������������������������������������������������������������������������ 11

Right-To-Left support���������������������������������������������������������������������������������������������������������������������������� 12

Layout Considerations��������������������������������������������������������������������������������������������������������������������������� 13

Context Is King��������������������������������������������������������������������������������������������������������������������������������������� 13

Currency and Numeric Formatting�������������������������������������������������������������������������������������������������������� 13

Dates and Time�������������������������������������������������������������������������������������������������������������������������������������� 15

Capitalization����������������������������������������������������������������������������������������������������������������������������������������� 16

www.allitebooks.com

http://www.allitebooks.org


■ Contents

viii

Sorting��������������������������������������������������������������������������������������������������������������������������������������������������� 16

Images��������������������������������������������������������������������������������������������������������������������������������������������������� 17

Input Validation�������������������������������������������������������������������������������������������������������������������������������������� 18

App Store Material��������������������������������������������������������������������������������������������������������������������������������� 18

How to Get Your Text Translated�������������������������������������������������������������������������������������� 18

■■Chapter 2: Working with Resource Files�������������������������������������������������������������� 21

About File Formats���������������������������������������������������������������������������������������������������������� 21

RESX������������������������������������������������������������������������������������������������������������������������������������������������������ 21

Android XML������������������������������������������������������������������������������������������������������������������������������������������ 27

Apple iOS String Dictionary������������������������������������������������������������������������������������������������������������������� 28

■■Chapter 3: Working with Multilingual App Toolkit������������������������������������������������ 31

Multilingual App Toolkit��������������������������������������������������������������������������������������������������� 31

Installation��������������������������������������������������������������������������������������������������������������������������������������������� 32

Using the MAT���������������������������������������������������������������������������������������������������������������������������������������� 33

■■Chapter 4: Island Menu Application��������������������������������������������������������������������� 49

About the App������������������������������������������������������������������������������������������������������������������ 49

App Architecture�������������������������������������������������������������������������������������������������������������� 50

Supplying Data to the App��������������������������������������������������������������������������������������������������������������������� 50

Building the Island Menu App������������������������������������������������������������������������������������������ 50

Create the Folders��������������������������������������������������������������������������������������������������������������������������������� 51

Define the Models���������������������������������������������������������������������������������������������������������������������������������� 52

Services Layer��������������������������������������������������������������������������������������������������������������������������������������� 54

View Model�������������������������������������������������������������������������������������������������������������������������������������������� 61

XAML Markup Extensions���������������������������������������������������������������������������������������������������������������������� 62

Adding the Views����������������������������������������������������������������������������������������������������������������������������������� 64

Running the Code���������������������������������������������������������������������������������������������������������������������������������� 78

Localizing the App��������������������������������������������������������������������������������������������������������������������������������� 82

Wrapping Up������������������������������������������������������������������������������������������������������������������������������������������ 95

www.allitebooks.com

http://www.allitebooks.org


■ Contents

ix

■■Chapter 5: Additional Resources�������������������������������������������������������������������������� 97

About Xamarin.Forms������������������������������������������������������������������������������������������������������ 97

Emulators������������������������������������������������������������������������������������������������������������������������ 98

Locale������������������������������������������������������������������������������������������������������������������������������ 98

Currency�������������������������������������������������������������������������������������������������������������������������� 98

Pluralization������������������������������������������������������������������������������������������������������������������ 100

Vernacular��������������������������������������������������������������������������������������������������������������������� 102

XLIFF����������������������������������������������������������������������������������������������������������������������������� 104

Index���������������������������������������������������������������������������������������������������������������������� 111

www.allitebooks.com

http://www.allitebooks.org


xi

About the Author

Chris Miller is a software architect for Tyler Technologies. He is a 
Microsoft MVP for .NET and is active in the local developer community. 
Chris is a Microsoft Certified Professional and a Xamarin Certified Mobile 
Developer. His experience covers back-end development work in ASP.NET 
and SQL Server, and front-end work with Xamarin and other Microsoft 
technologies. Chris maintains a blog at www.rajapet.com and can be 
followed on Twitter as @anotherlab. Chris lives in upstate New York with 
his wife and daughters.

www.allitebooks.com

http://www.rajapet.com/
http://www.allitebooks.org


xiii

Acknowledgments

I would like to thank the following people for the language translations that were provided for the  
“Island Menu” sample application:

My coworker, David Krings, for the German text
From SmartCAT.ai: Maximiliano Diaz for the Spanish text and Maxim Morkovkin for the Chinese 

(Simplified) text
And a thank you to Vladimir “Vova” Zakharov of SmartCAT for arranging the translations. SmartCAT 

provides an online service that matches freelance translators with clients.

www.allitebooks.com

http://www.allitebooks.org


1© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3_1

CHAPTER 1

What Is Localization?

Before anything else, preparation is the key to success.
—Alexander Graham Bell

What Is Localization, and Why Should You Pay for it?
This book is written for the native app developer who wants to support multiple languages and cultures with 
a shared code base.

I’ll cover definitions in the following sections, but for now just know that localization is part of the 
process that lets you put your app out in as many markets as you can. The app stores are global, and your 
app should be, too. This chapter focuses on native mobile app development and how to get from one 
language to multiple languages. You will learn about Android, iOS, and Windows 10 by using Microsoft 
Visual Studio and its Xamarin product.

Let’s start with some of the definitions. The common terms are localization and internationalization. 
They are distinct but related, and you need to handle both to make your app a global app.

Internationalization
Internationalization is the process of adapting your application to work with multiple regions and countries 
with the same code base. One example of internationalization is the handling of number formatting. The 
character that defines the decimal place is referred to as a decimal mark. The United States and Great Britain 
use a period as the decimal mark: 45.36. In other countries, such as France and Germany, a comma is used 
to indicate the decimal place: 45,36.

Some countries use multiple formats. In Canada, a period is used as the decimal mark when the 
language used is English. When French is used, the comma is the decimal mark.

Also associated with the decimal mark is the character used as the thousands separator for digit 
grouping. When the decimal mark changes with the language selection, the thousands separator changes 
along with it. When a period is used as a decimal mark, the thousands separator is the comma. When a 
comma is the decimal mark, a space is used as the thousands separator.

Although the period and the comma are the most common versions of the decimal mark, other formats 
are also in use. In Arabic, the decimal mark is a Unicode character called the Arabic decimal separator ".", 
and the thousands separator looks like this: “ ‘ ”

■■ Note  For more information about the decimal mark, please see the Wikipedia article posted at https://
en.wikipedia.org/wiki/Decimal_mark.

Electronic supplementary material  The online version of this chapter (doi:DOI 10.1007/978-1-4842-2466-3_1) 
contains supplementary material, which is available to authorized users.

https://en.wikipedia.org/wiki/Decimal_mark
https://en.wikipedia.org/wiki/Decimal_mark
http://dx.doi.org/10.1007/978-1-4842-2466-3_1


Chapter 1 ■ What Is Localization?

2

Another example of internationalization is the way dates are displayed numerically. Does the month 
come first, or does the day come first? That depends entirely on the culture.

When you see the date shown as 1/11/2016, it represents January 11th, 2016 to an American. A user in 
Great Britain reads it as November 1st, 2016. It's important to be able to display data in the format that the 
user is expecting.

When writing your application to support internationalization, you will use the frameworks or libraries 
that are part of your development system to correctly pick the correct decimal mark character. This character 
is based on the user's language and country settings, which are provided to your app by the OS.

Localization
Localization is the process of adapting your application from one language to multiple languages. You 
separate the text strings (and other resources such as images, video, and audio, if present) from your 
application so they can be translated into the languages that you plan to support. When the app runs, the 
resources for the end user are displayed that match the user's language and country preferences.

You may see internationalization abbreviated as i18n, where the 18 stands for the number of letters 
between the starting i and the ending n in internationalization. Similarly, you can see localization 
abbreviated as l10n. The technical term for this type of abbreviation is a numeronym. Other examples of 
numeronyms include K9 for canine and W3C for World Wide Web Consortium.

Why Do You Want to Do This?
The big reason why you should internationalize is this: the more languages and cultures that you can 
support, the larger the audience will be for your application. The larger the audience, the more money you 
can earn from your application. That money can come from sales of the application, increased ad revenue, 
or indirectly as part of a larger application.

Global Marketplace
The market for mobile applications is a global one. Each of the app stores provides support for multiple 
regions. The more languages and cultures that you can support, the greater the audience will be for  
your app.

Let’s Talk About the Numbers
The two largest app stores, the Apple iOS App Store and Google Play, provide detailed statistics on app 
downloads and revenues.

■■ Note  China has multiple app stores for Android apps. Being able to support multiple apps stores is vital 
if the Chinese market is important to you. The Google Play store currently allows only free apps in China; paid 
apps are barred.

Companies such as App Annie generate reports that provide breakdowns of app downloads and sales 
across the worldwide markets. Figure 1-1 shows recent trends for the top three countries for iOS App Store 
revenue.



Chapter 1 ■ What Is Localization?

3

Until this year, the leader in game revenue for iOS was the United States, but China beat the United 
States in early 2016. So if you are writing a game for iOS, you don't want to ignore the Chinese market.

For worldwide app downloads, if you look at the numbers gathered by App Annie, it becomes readily 
apparent that the global app market is much large than the US market (see Figure 1-2).

Figure 1-1.  Top three countries by quarterly iOS App Store games revenue Source: App Annie Index, Market 
Q3, 2016.



Chapter 1 ■ What Is Localization?

4

The download rate for iOS apps in China is nearly double the American rate. The Google Play 
downloads in Brazil and India are nearly as large as the United States.

If you go by revenue, the numbers are slightly different (see Figure 1-3).

Figure 1-2.  Top countries as shown by combined iOS App Store and Google Play downloads, Q2 2016 Source: 
App Annie Index, Market Q3, 2016



Chapter 1 ■ What Is Localization?

5

When measured by revenue instead of downloads, most of the world trails the US market. Japan and 
China generate close to the same revenue as the US app stores.

The App Annie charts are indexed based on the downloads and revenues of the US markets. The 
Google Play downloads are not shown for China due to the small market share for Google Play. The Chinese 
Android app store market has multiple players.

Smartphone users want apps that have been localized to their language. A 2014 survey by Common 
Sense Advisory queried 3,000 users in 10 countries for which English was not the primary language. The 
results showed that 75% prefer to buy apps in their native language, and 60% rarely or never purchased 
English-only apps.

Other Reasons for Localizing an App
You may have legal or contractual obligations to provide localized versions of your application. If you are 
working on an app as a contractor, you may have specific requirements for language and culture support. If 
you are doing an app for Canadian customers, for example, they want both English and French supported.

Although you don't have to be fluent in multiple languages, you can make sure that your app can 
support multiple languages and countries. Even if the language doesn’t change, there might be cultural 
differences. For example, the culture settings have different date formatting between US English, Canadian 
English, and UK English.

Figure 1-3.  Top countries by combined iOS App Store and Google Play revenue, Q2 2016 Source: App Annie 
Index, Market Q3 2016



Chapter 1 ■ What Is Localization?

6

Identifying Language and Culture
The standard way of identifying language and country in software development is to use variations of the 
Internet Engineering Task Force (IETF) language tag to identify language and culture in your code. The 
IETF is a collection of groups that develop and promote Internet standards. Originally prompted by the US 
government, the IETF is now an international nonprofit organization.

In 1995, an IETF group called the Network Working Group published RFC 1766: “Tags for the 
Identification of Languages.” It defines the tag used to indicate a language. Although there are variations of 
the tag definition, the focus here is on the common one- and two-part conventions. The syntax of this tag is 
the primary tag ("-" subtag). For this book, the tag is referred to as the language or locale string.

The language codes are typically the two-letter codes from the ISO-639-1 table. Some common entries 
are shown in Table 1-1.

For script languages, you can use the ISO 15924 standard, which uses a four-letter code. The first letter 
is uppercase; the remaining three are lowercase. Use this standard if you are supporting both the traditional 
and simplified forms of the Chinese language. For example, Chinese in the simplified script is designated 
as zh-Hans, and Chinese in the traditional script is zh-Hant. You can still append the region code after the 
script code. For simplified Chinese for the Hong Kong region, use zh-Hans-HK.

The subtag represents the region in which the language is being used. The subtag is optional and is 
prefixed with the "-" character when included. The subtags are defined by the two-letter country codes from 
the ISO 3166 list. These codes are referred to as the Alpha-2 code (see Table 1-2). There is a three-letter code 
that is referred to as the Alpha-3 code, but it’s not used for the subtag.

Table 1-1.  Selected ISO 639-1 Language Codes

Language name Native Name ISO 639-1 Code

English English en

Spanish Español es

French Français fr

Italian Italiano it

Japanese 日本語 ja

Russian Pуccкий ru

Portuguese Português pt

Arabic ةيبرعلا ar

Hindi हिन्दी hi

Chinese 中文 (Zhōngwén) zh

German Deutsch de



Chapter 1 ■ What Is Localization?

7

To stay consistent, this book uses the "-" character to separate the tags to stay consistent. Some 
operating systems (OSs) such as iOS use the underscore (“_”) character to separate the language tag from 
the region tag.

Android needs to have an r prefix in the region code for the folder names. For example, Spanish spoken 
in Mexico needs an Android resource folder defined as es-rMX. In your code, the format of the current 
locale is referenced through the Resources.Configuration.Locale property that uses an underscore as the 
separator. For the Spanish in Mexico example, the locale is returned as es_MX.

Although this Android deviation usually doesn’t require attention, sometimes you have to remember 
that the locale strings from Android may need to be manipulated. One such situation occurs when you are 
requesting localized data from a web service. You want to be able to use a single set of resources to handle all 
the platforms. (The sample app that you will build in Chapter 3 shows an example of how to do this.)

Most of the time, you will work with the two-part code. By convention, the primary tag is lowercase, 
and the subtag is uppercase. For example, for US English, the language tag is en-US. For the UK, it is en-GB 
(see Table 1-3).

Table 1-2.  Sample Entries from the ISO 3166 Alpha-2 List

Country Name Alpha-2 Code

United States US

United Kingdom GB

Brazil BR

Portugal PT

Germany DE

Spain ES

Mexico MS

China CN

Canada CA

France FR

Table 1-3.  Some Common Locale Strings

Country Name Locale

English, United States en-US

English, United Kingdom en-GB

English, Canada en-CA

French, Canada fr-CA

French, France fr-FR

Portuguese, Portugal pt-PT

Portuguese, Brazil pt-BR

Chinese (simplified), China zh-Hans-CN

Chinese (traditional), Hong Kong zh-Hant-HK

Arabic, Egypt ar-EG

http://dx.doi.org/10.1007/978-1-4842-2466-3_3


Chapter 1 ■ What Is Localization?

8

■■ Note   Because a locale string can be in the formats of xx, xx-XX, xx-Xxxx, or xx-Xxxx-XX, try to avoid 
parsing and manipulating the string. With the exception of dealing with Android and the extra r, just pass the 
locale string through and let the runtime pick the right set of resource files.

Prior to iOS 8, iOS supported only the primary tag. You could specify the language, but not the country. If you 
were supporting the French language, you needed to make sure that the words and terms used were common 
to multiple dialects.

When your application starts up, it attempts to match the closest language based on the language string 
and the resource files included with the application. It tries to find the closest match first, based on the 
primary tag and subtag. If that search fails, it attempts to locate the resource based on just the primary tag. If 
that fails, it will just use the default language of the app. (That default is the language that the developer used 
as the default.)

You don’t need to account for every variation of language and culture. If all the English strings in your 
app are the same across multiple dialects, you just need to provide a single en language resource. If most of 
the strings are the same, but a few are dialect specific, you can handle that as well. Let’s say that the English 
strings in your app are 99% identical between the US and the UK version; the only difference in this app is 
the word color. In the UK, the preferred spelling is colour. You can handle this by putting all the strings in an 
en resource file. You would then also have an en-GB resource file that contained colour.

With the French language, two of the most popular dialects are the Metropolitan version used in France 
(fr-FR) and the Canadian version (fr-CA). Canadian French is considered less formal than Metropolitan 
French; for example, Canadian French uses fewer specifiers and instead uses que as a relative pronoun.

For example, for the sentence "I found the document I needed," the Canadian French translation would 
be "J’ai trouvé le document que j’ai de besoin." The Metropolitan French version would be "J’ai trouvé le 
document dont j’ai besoin." Another example is the term for weekend. In Metropolitan French, you use le 
weekend; in Canadian French, you use la fin de semaine.

Portuguese is another language with dialect differences. I’ll refer to the dialect spoken in Portugal 
as European Portuguese. Brazilian Portuguese has grammar rules and nouns that are different from the 
European Portuguese. Some examples of these differences are shown in Table 1-4.

Table 1-4.  Selected Differences Between Brazilian and European Portuguese

English Brazilian Portuguese European Portuguese

media mídia media

train trem Comboio

bus Ônibus autocarro

brown marrom castanho



Chapter 1 ■ What Is Localization?

9

Be careful when doing partial resource files. Although they take up less space, you have a greater risk of 
missing some of the translations.

Where Does the Language String Come From?
The language string is supplied to your application from the OS. Although the values that make up both 
parts of the language string come from ISO 639 and ISO 3166 lists, they don’t contain all the values of 
either list. Most mobiles support a subset of countries and languages. With iOS, Apple supports more than 
30 languages for the OS, but the user can select any language and region. Windows 10 for desktop has an 
extensive set of supported languages. Windows 10 for the phone supports a more limited set of languages, 
and that list can be limited by the region in which the phone was sold.

The languages supported by a device can vary. Newer versions of an OS usually add more languages. 
Some vendors may limit the number of languages supported by region.

For the most part, you do not need to do anything with the language string. The runtime code in 
your application should manage parsing the language string and selecting the right resource file. When 
you do locale aware formatting, the region code of the language string is used to manage the other part of 
localization: the formatting of dates, times, numbers, and so on.

■■ Note   Although iOS supports almost any language and region combination, iTunes Connect supports a 
smaller list of languages. So although your app can be localized in a language like Polish, the app descriptions 
are not available in Polish; they default to English.

Other Things to Consider
In addition to handling internationalization and localization, you may need to also work with features that 
are bigger in one market than in others.

Users in China do not have access to Facebook or Twitter. In their place, the popular social media 
apps in China are WeChat and Weibo. With more than 300 million WeChat users, leveraging the WeChat 
integration API from your app can provide added exposure to your app.

Which Languages Do You Need to Support?
If you are developing your app in English and you have decided to add support for other languages, you need 
to decide which languages to add. If you need to support languages X, Y, and Z for contractual obligations, 
your choices are already defined for you. You can build in the support for the cultural elements and have the 
text translated by professionals.

If you are large company such as Facebook, you support as many languages as you possibly can. At the 
time that this book was written, Facebook supports more than 70 languages. It is a large enough company to 
have its own translation staff.

If you are the software development team or a significant portion of your company's software team, 
you don’t have the same resources available that Facebook has. So you'll need to pick and choose which 
languages to support. One way to choose languages to support is by the number of native speakers. The top 
ten languages for native speakers is shown in Table 1-5.



Chapter 1 ■ What Is Localization?

10

Let’s suppose that you wrote your app for just the English language. Your potential audience of native 
speakers is approximately 340 million. The actual numbers would be a percentage of that 340 million 
because there are fewer smartphone users. But the number gives you something to work with.

If you add support for just Chinese and Spanish, you expand your potential market from 340 million to 
a combined total of 2 billion, roughly 5 times the size of your original market. You can't count on every single 
person being a potential customer, but it does show that Chinese and Spanish speakers greatly outnumber 
English speakers.

What’s Involved with Translation?
When you write an app that will support multiple languages, you have to separate the text and other assets 
(images, videos, audio) from the code. Having the text strings in a resource file provides two benefits for you.

First, you can have the application framework select the appropriate language resource file at runtime; 
you don’t need the code to pick the correct language. The application runtime will determine the user's 
current language and culture and will load in the best match for the locale.

The second benefit is to be able to provide just the text resources to a translator. You don't need to 
provide all your source code—only the resource files containing the text to translate. (Chapter 2 covers the 
mechanics of how to work with language resource files.)

Text translation involves more than replacing one word or set of words with another. Other languages 
can have different rules and usages. It's important to be aware of what needs to be translated and how 
languages are handled differently between cultures.

One language can have multiple dialects or even character sets. For example, the written Chinese 
language has two standard character sets: traditional and simplified.

Simplified Chinese was instituted by the People’s Republic of China (PRC) in the 1950s and ‘60s. It was 
based on work started decades earlier. The simplified characters were created by reducing the number of 
strokes required to create a character and simplifying the number for forms for a character.

After the implementation of simplified Chinese, the term traditional Chinese has been used to describe 
the previous character set. Modern Unicode supports both simplified and traditional character sets.

If you are supporting mainland China (PRC) and Singapore, you need to support simplified Chinese. If 
you are supporting Taiwan, Hong Kong, and Singapore, you need to support traditional Chinese. Adoption 
of simplified Chinese has spread in recent years and support of simplified Chinese is needed to make your 
product salable. 

Table 1-5.  Top Ten Languages by Population (2016) Source: Lewis, M. Paul, Gary F. Simons, and Charles D. 
Fennig (eds.). 2016. Ethnologue: Languages of the World, 19th ed. Dallas, Texas: SIL International

Rank Language Native Speakers (in Millions)

1 Chinese 1,302

2 Spanish 427

3 English 339

4 Arabic 267

5 Hindi 260

6 Portuguese 202

7 Bengali 189

8 Russian 171

9 Japanese 128

10 Lahnda 117

http://dx.doi.org/10.1007/978-1-4842-2466-3_2


Chapter 1 ■ What Is Localization?

11

All English-speaking countries have multiple dialects of the English language. Although the dialects are 
very close, they have terms unique to each culture. US and Australian English uses the term truck to refer 
to what is called a lorry in the UK. What an American refers to as a cell phone, Australians and Brits call a 
mobile phone.

Translate Sentences, Not Words
Although it's tempting to just translate words and reuse them in multiple places, that process usually doesn't 
work. Other languages can have rules that may not exist in your language. Although it may seem like an 
extra expense to translate the same text multiple times, it's better to treat each label in your app separately. 
You do get some level of reuse with translations: a set of resources that can be reused is called a translation 
memory. The text for the OK button will be the same every time you use it, for example. But you may find 
that the same label on two screens could get a different translation due to the length of the word or phrase. It 
may be short enough on one page, but too long on another page, requiring some human guidance to pick an 
alternate spelling or abbreviation.

For example, let’s say you have an upload button and then a dialog that displays a message after the 
upload has completed. In English, you have two resource strings:

"Upload"
"The upload is complete"

Although you could build the dialog message string and use the "Upload" string, it can fail for other 
languages. The same strings in Spanish are the following:

"Cargar"
"La carga está completa"

Upload is used as a verb when it's the button label and then as a noun in the dialog message. When 
translated into Spanish, the spelling changed between the verb and noun usages.

Dealing with Grammatical Genders
Many languages have grammatical genders; nouns are considered male, female, or neutral (Slavic, Latin, 
Greek). Some languages have just male and female genders (Romance languages). Other languages 
combine the male and female as a mixed gender and still have a neutral gender. Other languages do not use 
a grammatical gender (English, Afrikaans).

The grammatical gender becomes important when sentences are constructed and the noun is 
determined at runtime, based on some condition. If you were constructing that sentence in pieces, based 
some action or condition, you would want to make sure that the grammar is correct for each language.

For example, suppose that you have an app that is connected to the user's car and can report the status 
of the components of the car. Let's assume that there is some code that reports if the car is running or if the 
lights are on.

In English, it is the following:

The lights are XXXX
The engine is XXXX

In Spanish, it is the following:

Las luces están XXXX
El motor está XXXX



Chapter 1 ■ What Is Localization?

12

In Spanish, the engine of a car has the masculine gender, whereas the lights are considered to be female. 
There is also a difference with plural words, but you'll dive into pluralization in the next section.

You can deal with the gender rules in two ways. The first way is to work with sentences and treat the 
entire sentence as a translatable resource string. The other way is to construct the sentence so that text is 
abbreviated so the definitive articles are not used. For example, consider this text:

The doors are unlocked

You can leave off the definitive article and display the text this way:

Doors are unlocked

Or you can display the text as a condition:

Doors: Unlocked.

Pluralization
The way languages handle plural forms of nouns can vary widely. English has two forms: one of something 
and then everything else. Other languages have more complicated rules. Asian languages (Chinese, Korean, 
Japanese, Vietnamese) use only the plural form. Slavic languages typically have three forms, and the rules 
that define the conditions for each form can vary with the Slavic family.

The simplest way to deal with the plural rules is to display the quantity as a condition:

Apples: 4

Avoid doing this, however. Your goal is to have an app that feels natural to the user. Chapter 4 will show 
a way to handle pluralization that respects the plural forms for the locale that the user has set for the device.

Right-To-Left support
Supporting right-to-left (RTL) languages can be a bit tricky. The example app that you will build in this book 
will use Xamarin.Forms, which (as of version 2) does not support RTL layouts. If you need to support RTL 
languages such as Arabic, Hebrew, or Farsi, don’t use Xamarin.Forms——at least not for the RTL languages.

Xamarin.Android and Xamarin.iOS let you program using the native UI toolkits. Android has had full 
support for RTL layouts since Android 4.2. If you need RTL support, make 4.2 the minimum version. You can 
do RTL layouts in older versions, but it's much easier with version 4.2 and up.

To enable RTL support in Android layout files, you have to do the following:

	 1.	 Declare in the app manifest file that this app supports RTL mirroring in the view 
layouts by adding android:supportRtl="true" to the <application> element.

	 2.	 Replace any layout properties that end in left or right with start and end. For 
example, paddingLeft would become paddingStart. If you need to support 
Android versions prior to 4.2, you would have both the left/right and the start/
end properties.

In iOS, the mirroring of text layout for RTL languages should be handled transparently. This 
functionality was added in iOS 9. Unless you are using custom controls, you shouldn't have to do anything 
extra to support the RTL languages.

http://dx.doi.org/10.1007/978-1-4842-2466-3_4


Chapter 1 ■ What Is Localization?

13

Windows uses a property named FlowDirection to set RTL mirroring. It is set by the current culture of 
the device; as a developer, you shouldn't have to do anything extra to provide RTL support. If you are using 
images that have any form of directional bearing, you have to validate those images to make sure that they 
are still correct on a RTL view. If you have created your own dialogs, you have to verify that the default button 
placement is correct for a RTL view.

Layout Considerations
When designing a view, try to place the labels above the text or value fields. When the view is rendered 
as RTL, the controls will still be correctly placed. Doing so also avoids the potential problem of having 
translated text being much longer than default text.

With Xamarin.Forms, the StackLayout control makes it very easy to place the controls in a vertical list. 
If you are using Xamarin.iOS, the vertical UIStackView accomplishes the same task. On Xamarin.Android, 
the LinearLayout with the orientation set to vertical allows you to group elements from top to bottom. For 
Universal Windows Program (UWP), the StackPanel layout control flows the controls from top to bottom by 
default.

Context Is King
When sending text out to be translated, the context is very important. A word or phrase can have multiple 
meanings, and there may be only a single correct interpretation, based on the usage. This is what separates a 
professional translation job from a machine translation job.

In US English, the word trunk has several meanings; one of them refers to the storage in the back of a 
car. In UK English, the word boot also has multiple meanings; one of them refers to the rear car storage area.

To provide context, you can provide descriptions of the text to be translated. Screenshots of the 
application running in the default language can also be useful.

A word or term can be short in length in one language and much longer in another language. A skilled 
translator can suggest an alternative term or an abbreviation that would provide a better fit with the screen 
layout.

Currency and Numeric Formatting
The .NET Framework has excellent support for handling global numeric formats. The standard numeric 
format strings handle the differences for the decimal point character and for the thousands separator 
character. As long as you use the numeric format strings, the numbers will be displayed in the correct format 
for the current culture.

Use the following code to format a number to be displayed on the screen:

var s = String.Format("{0:n}", 1234567.89));

Table 1-6 shows the values for the selected locales.



Chapter 1 ■ What Is Localization?

14

There is also support in the .NET Framework for currency formatting. The C format specifier formats a 
number using the locale correct character and in the right place. American dollar values have the $ as the 
prefix to the currency value; European Union countries display the € as a suffix to the value.

Use the following code to format a currency value to be displayed onscreen:

var s = String.Format("{0:C}", 4567.89));

You see the values for the selected locales shown in Table 1-7.

Table 1-7.  Currency Formatting by Locale

Locale Value

en-US (English, United States) $4,567.89

en-CA (English, Canada) $4,567.89

fr-CA (French, Canada) 4 567,89$

fr-FR (French, France) 4 567,89 €

pt-PT (Portuguese, Portugal) 4 567,89 €

pt-BR (Portuguese, Brazil) R$4.567,89

zh-Hans-CN (Chinese [simplified], China) ¥4,567.89

zh-Hant-CN (Chinese [traditional], Hong Kong) HK$4,567.89

ar-EG (Arabic, Egypt) ج.م.4,567.89

Table 1-6.  Numeric Formatting by Locale

Locale Value

en-US (English, United States) 1,234,567.89

en-CA (English, Canada) 1,234,567.89

fr-CA (French, Canada) 1 234 567,89

fr-FR (French, France) 1 234 567,89

pt-PT (Portuguese, Portugal) 1 234 567,89

pt-BR (Portuguese, Brazil) 1.234.567,89

zh-Hans-CN (Chinese [simplified], China) 1,234,567.89

zh-Hant-CN (Chinese [traditional], Hong Kong) 1,234,567.89

ar-EG (Arabic, Egypt) 1,234,567.890

You have to be very careful when localizing currency values. You can't print a US dollar amount as a 
Euro value unless you also do a currency exchange lookup to get the current USD-to-Euro exchange rate. If 
your app has in app purchases (e.g., Apple In App Purchases), use the currency symbol that the App StoreKit 
API tells them to use.

If you do want to use currency exchange service within your app, there are free and commercial services 
available. The European Central Bank has a page showing foreign exchange rates against the euro. (Chapter 5  
has more information on currency exchange services.)

http://dx.doi.org/10.1007/978-1-4842-2466-3_5


Chapter 1 ■ What Is Localization?

15

If you use a currency exchange rate that comes from an outside source, make that clear to app users. Let 
them know who is providing the exchange rate and how old the data is. 

Dates and Time
Date formatting is always culture specific. Although most countries follow the Gregorian calendar, the order 
of the date fields and the characters used to separate them can vary wildly.

Getting the right date format for display and data entry is very important. When the day part of the 
date is less than 12, you can’t tell whether the date is in the day/month/year format or the month/day/year 
format by just looking at the date.

If you need to convert a date value to a string to send to a service, your best bet is to the ISO 8601 format. 
The ISO 8601 standard defines a date as YYYY-MM-DD. If the date is October 1st, 2016, it is represented as 
2016-10-01 as an ISO 8601 string.

The ISO 8601 standard for time is hh:mm:ss, where hh is the number of hours since midnight (0-23), mm 
is the number of minutes (00-59), and ss is the number of seconds (0-60). 

■■ Note   Seconds can go up to 60 to account for an inserted leap second. Every few years, an extra second is 
added into the Coordinated Universal Time (UTC) scale, which keeps atomic clocks in sync with the rotation of 
the earth.

Values containing both time and date just combine the two formats as YYYY-MM-DDThh:mm:ss. Case 
matters: MM and mm have two different meanings. The former is the number of the month; the latter is the 
number of minutes.

The .NET Framework has standard patterns for formatting date and time strings. The "d" format string 
formats the date using the ShortDatePattern. When you use the date and time format strings, the .NET 
Framework returns string values using the correct field order and date and/or time separators. Let's take a 
look at some code and see how the date formatting changes for different cultures:

var dt = new DateTime(2016, 10, 2);

System.Threading.Thread.CurrentThread.CurrentCulture = new CultureInfo("en-US");

Console.WriteLine("English (US)");
Console.WriteLine(dt.ToString("D"));
Console.WriteLine(dt.ToString("d"));
Console.WriteLine(dt.ToString("s"));

System.Threading.Thread.CurrentThread.CurrentCulture = new CultureInfo("pt-BR");

Console.WriteLine("\nPortuguese (Brazil)");
Console.WriteLine(dt.ToString("D"));
Console.WriteLine(dt.ToString("d"));
Console.WriteLine(dt.ToString("s"));

System.Threading.Thread.CurrentThread.CurrentCulture = new CultureInfo("de-GR");

Console.WriteLine("\nGerman (Germany)");
Console.WriteLine(dt.ToString("D"));
Console.WriteLine(dt.ToString("d"));
Console.WriteLine(dt.ToString("s"));



Chapter 1 ■ What Is Localization?

16

When you run that code, you get the following output:

English (US)
Sunday, October 2, 2016
10/2/2016
2016-10-02T00:00:00

Portuguese (Brazil)
domingo, 2 de outubro de 2016
02/10/2016
2016-10-02T00:00:00

German (Germany)
Sonntag, 2. Oktober 2016
02.10.2016
2016-10-02T00:00:00

The Long Date ("D") format shows that punctuation, spelling, and case will change based on the 
culture. The Short Date ("d") format shows how the ordering of the date fields and the date field separator 
changes. The Sortable ("s") format string follows the ISO 8601 standard, and the result is the same for each 
culture.

When working with multiple time zones or dealing with multiple calendars, consider using the Noda 
Time library (http://nodatime.org/). It has code conversions from one time zone to another and code 
for converting dates from the default calendar to other calendars, such as the Hebrew, Islamic, and Coptic 
calendars.

Capitalization
When translating text, the professional translator should be aware of the capitalization rules for the language 
that is being translated to. Here are a couple of example rules:

•	 English and German capitalize days of the week, month names, and language 
names. With other languages, the rules vary, but most do not capitalize days of the 
week or months.

•	 In German and Luxembourgish (a German-derived language), all nouns are 
capitalized. Most European languages capitalize single word nouns, and multiple 
word nouns follow English publication rules (such as “Cooking for Fun”).

Sorting
The same set of characters can sort one way in one language and have a subtly different order in another 
language. With some languages, a sequence of letters is treated as a different character for sorting. In the 
Czech language, the letter pair of ch comes after the letter h, but any other combination using the letter c 
follows the letter c. Consider the list of names shown in Table 1-8.

http://nodatime.org/


Chapter 1 ■ What Is Localization?

17

If you sort the data on the device with a .Net Framework method such as List<T>.Sort(), the Sort() 
method should sort the values using a collation sequence that is correct in the current culture. If you 
download a list from a web service and that service has sorted the list, it may not be in the right order if that 
web service is running on a machine with different culture settings.

There are a couple of ways to ensure that you have your data sorted correctly. One way is to have the 
web service sort the data using the culture information from the device. If the web service uses a List<T>.
Sort(), there is an overload to the Sort() method that lets you pass in a culture specific compared with the 
sort method.

Staying with the Czech example, consider the case of a user using a device set to the Czech language 
and culture, and an app is requesting a sorted user list from an English web server. When the app makes 
the request for the user list, somewhere in the web service request the locale string of cs-CZ (Czech [Czech 
Republic]) is passed in. The web service could use a syntax like the following to pass back a locale-specific 
sorted list:

Userlist.Sort(StringComparer.Create(new CultureInfo(LocaleString), true));

This code would perform a cases-insensitive sort on UserList with the locale stored in the variable 
named LocaleString.

The other way to ensure a locale-correct sort sequence is to sort the data on the device after making the 
web service call to get the list.

Images
If your app makes extensive use of images, you may need to localize some of them. When using images for 
icons, you want to make sure that the image has meaning for the cultures that you are supporting.

Try to avoid using country flags to indicate a culture. If you use a French flag to indicate some 
setting when the app is running with the French language, you will offend Francophone users in Quebec. 
Québécois is a distinct version of the French language, and its speakers have a strong identification with 
their culture.

If your app uses a custom color palette, you need to be aware that your color choice may have an 
unintended significance in other countries. Be careful with images or symbology used with the color. For 
example, don’t use a book icon in the color yellow for the Chinese market. In Chinese culture, yellow book is 
a term for pornographic material.

If you are providing video and/or audio content, they may need to changed or updated to include 
subtitles. If the images are part of the layout, you need to verify that they look correct on an RTL layout.

Table 1-8.  Comparison of Sort Orders

Sort Order Sorted with English Culture Sorted with Czech Culture

1 Carl Carl

2 Charles Harrison

3 Harrison Charles

4 James James



Chapter 1 ■ What Is Localization?

18

Input Validation
If you are using entry validation, you want to avoid having validation rules that require a minimum number 
of characters. A single kanji is sufficient for a name in some languages. In Indonesia, it's still common 
for individuals of Javanese descent to have only a single name, or mononym. In Burma, mononyms are 
common. The third Secretary General of the United Nations was U Thant. Thant is his name; U is the 
Burmese equivalent of Mr.

Most Icelanders have a single name, and they may use a patronymic or matronymic in lieu of a 
surname. For example, the Icelandic musician Björk uses the patronym Guðmundsdóttir to indicate that she 
is the daughter of Guðmundur Gunnarsson. If she used your app, she would probably just want to use Björk 
for the name field.

When you allow number entry, make sure that your validation code correctly detects decimal marks 
and thousands separators.

Whenever possible, use the datetime picker controls to get the date and time into the correct formats.

App Store Material
In addition to the text assets used in your application, you should also have the metadata translated that 
gets sent to the app stores. This metadata can include short and long descriptions, images, videos, and 
support contact information. The specific information required will depend on the store to which you are 
submitting the app.

It's important to localize the app store data. When a user searches for an app, you want the localized 
version of your app showing up in the app store search listings. App stores often require a privacy policy 
URL and e-mail addresses for support. You should have fully localized versions of your privacy policy and be 
ready to provide support in the languages that your app supports. 

How to Get Your Text Translated
A fast and inexpensive way to translate your text is to use machine translation. Both Microsoft and Google 
have translation tools that are pretty good. But they are not perfect, and they won’t understand the context 
of your application. You could have a sentence in English that could be translated four different ways into 
Spanish. Each translation might be grammatically correct, but only one of them is the right translation for 
you.

Machine translation does provide some good value. It's a great way to make sure that all your text assets 
in the app are represented as translatable resources. If you have an app that was translated into Spanish and 
you run the app and see the words Place Order, you know that you missed that text. Human translators can 
use machine translation tools to do the bulk of the work. They can then review the translations and correct 
the translated text as needed.

The other immediate advantage of machine translation is checking to make sure that the text fits in 
the screen layout. Some languages are more verbose than others. If your app was laid out so that all the text 
is squeezed in, you'll probably have some problems when running under other cultures. Use a layout that 
places labels above text entry or value fields to avoid problems with the lengths changing.

Machine translations are no substitute for professional translations. You want your apps to have a 
natural feel and not have any jarring translation miscues. Professional-looking apps always have human 
translation and/or review of machine-translated text.

If your company has inhouse translation resources, it is a great advantage. You have people with the 
domain knowledge of the apps and have the context to understand the needs for text usage in the app. 
Unless it's a formal translation department, the odds are that you will get the translation work done without 
a significant budget cost to you.



Chapter 1 ■ What Is Localization?

19

You may also have access to local language professionals who might be willing to take on some 
translation work. Your local university or high school may have staff that can do some translating. It will take 
some extra work on your part to make sure that the translator knows the context of text from your app.

And there are companies that provide professional translation services. If you need to have translation 
performed in multiple languages, a professional service can provide the languages that you need and can 
usually get the job done in less time than someone doing it as a side job.

For the sample app in Chapter 3, a company named SmartCat.AI did some volunteer work to translate 
the small amount of text needed for the app. SmartCat provides a nice workflow that works well with 
application development.

For a commercial app, the translation workflow works something like this:

	 1.	 Register for an account on SmartCat.ai.

	 2.	 Create a new project and upload the assets to be translated. Professional 
translation houses can handle files in many formats.

	 3.	 Search for available translators for the languages that you need translated. 
SmartCAT works with freelance translators. You can pick the translator with the 
experience that best matches the text to be translated. You can filter the list by 
experience and rates.

	 4.	 Select the translator; if the translator takes on the job, that person starts working 
on your assets. SmartCAT provides a web portal, and you can access the 
translations as they are performed.

	 5.	 Review the translated resources, and the work is completed. SmartCAT then 
arranges for the payment to the translator.

Other services have different workflows. You may see a workflow in which you get a project manager 
assigned to your app. You would provide the text assets to the product manager, and that manager works 
with people to get the material translated.

Many of these companies are used to mobile app development needs and can work with you to make 
sure that the additional items for the app store are met. You can expect to pay anywhere from $0.10 to $0.25 
per word (at the time of writing) with a professional translation company.

http://dx.doi.org/10.1007/978-1-4842-2466-3_3


21© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3_2

CHAPTER 2

Working with Resource Files

Coffee is also a language in itself.
—Jackie Chan, Chinese Radio International, June 2006

About File Formats
When it comes to managing string resources for localization purposes, there are some file formats that you 
will need to work with. Applications written with the .NET Framework make use of the RESX file format. 
Xamarin.Android applications can also use the native Android strings.xml file. Apps written with Xamarin.
iOS can use the native LocalizedString files. To manage language resource files for use with translation 
professionals, you can import and export XLIFF files.

The tools that Visual Studio provides do a great job of letting you concentrate on the text translations. 
It is helpful to know a little bit about the underlying file structures.

RESX
The RESX file format is the string resource file format used by the .NET Framework. A .resx resource file 
contains objects and strings enclosed inside XML tags.

Visual Studio provides designers for the .resx files. It also provides a table structure to make it easy 
for the developer to add and modify string resources. Using XML as the file format makes it easy to provide 
tooling for working with the .resx files.

When you add a .resx file to your project, Visual Studio also adds a code-behind file that has the same 
name as the .resx file, but with a .designer.cs extension. When you build your application, Visual Studio 
invokes the resgen.exe tool to convert the resources defined in the .resx XML file into a class that compiles 
into your application. This class lets you reference the resource text strings as .NET properties, and you get 
full IntelliSense for picking the text values.

The .designer.cs file is generated from the .resx file at build time. You should never manually edit the 
.designer.cs file because the changes would be lost the next time you edited the .resx file or did a rebuild.

The way to support multiple languages with .resx files is straightforward. The default language has 
a file with the resource name and the .resx extension. For example, let's say the resource file is named 
MyText.resx. In that .resx file, three string values are defined: Name, Age, and Eye Color.

■■ Note  A common practice is to add a folder named Resources to the project and then place all the .resx 
files inside that folder. For a larger project, doing so keeps things tidy.

www.allitebooks.com

http://www.allitebooks.org


Chapter 2 ■ Working with Resource Files

22

To add the resource file, right-click the project name and select Add and then New Item (see Figure 2-1). 
If you want the .resx file inside a folder, right-click the folder instead of the project name.

Figure 2-1.  Adding a new item in a Visual Studio project

When the Add New Item dialog comes up, select Resources File and add your resource file (see Figure 2-2).



Chapter 2 ■ Working with Resource Files

23

This process creates both the MyText.resx and MyText.Designer.cs files. It then opens up the 
Resource Designer on the .resx file. The empty resource file should look something like Figure 2-3.

Figure 2-2.  Selecting the Resources File template

Figure 2-3.  Editing a new .resx file



Chapter 2 ■ Working with Resource Files

24

The first to change is the Access Modifier property. By default, it is set to Internal, and only classes 
within the same project and namespace can access the properties. When you are targeting multiple 
platforms and sharing the code, you want the resources defined in the shared code as much as possible. So 
change the Access Modifier from Internal to Public.

Add the string values to be used in the app in a table format, as shown in Figure 2-4. The name of the 
string value is what is exposed as code, so the name has to follow the same rules as any other property. After 
adding the Name, Age, and EyeColor strings, you should see something similar to Figure 2-4.

Figure 2-4.  The .resx file with text values defined

Once you save the .resx file, the .designer.cs file updates. If you open up the .designer.cs file, you'll 
see some code for managing the resource and then properties defined for each text string. For the EyeColor 
string, the following code is generated:

/// <summary>
///   Looks up a localized string similar to Eye color.
/// </summary>
public static string EyeColor {
       get {
              return ResourceManager.GetString("EyeColor", resourceCulture);
       }
}

■■ Note   You never want to edit the code that appears in the .designer.cs file. The code is generated every 
time you edit the .resx file. If you make any manual changes to the .designer.cs file, they are lost the next 
time you edit the .resx file.

The process works this way: when you reference a resource string at runtime, it does a lookup based on 
the current language and country settings (i.e., the locale). If it finds a match for that locale, it uses that set 
of string resources. If it can't match that locale, it tries to match on just the language. If that fails, the default 
resource file is used.

When you add resource files for additional languages, they get a .designer.cs file, but not the 
autogenerated properties. The code defined for the default language will be used for the additional languages.

Because you created a .resx resource named MyText, it will be the class name for your string resources. 
If the .resx file is created in a folder, it has the folder name as part of its namespace.



Chapter 2 ■ Working with Resource Files

25

To reference the string resource in code, use a syntax like this:

eyeLabel.Text = MyText.EyeColor;

In an XAML page, use something like this:

<TextBlock Text="{x:Static MyText.EyeColor}" />

With the strongly typed resource file, you get full IntelliSense as you are typing (this applies to both 
the code-behind .cs file and with the XAML page). And you get compile time validation that the resource 
has been defined. If you remove or rename a string resource, the code will fail to compile, and the compiler 
errors will show where the string resources were previously referenced.

To add a second language, just add a new resource file and name the file with the language (and culture, 
if used). To add Spanish, you can add a resource file named MyText.es.resx. Now you can define the same 
strings that were defined for the default language.

This set of translated strings work for any locale (language + country) that uses Spanish. To use Spanish 
in Spain, the locale code is es-ES; to use Spanish in Mexico, the locale string is es-MX. Users in both locales 
get the same translated results.

If you want to support a language for multiple countries, you can create a .resx file for each language/
country combination. The Portuguese language has two popular dialects. European Portuguese is used in 
the country of Portugal, and Brazilian Portuguese is the dialect used in the county of Brazil. To create the 
resource file for European Portuguese, the locale code is pt-PT, where the lowercase pt is the language code 
and the uppercase PT is the country code. For Brazil, use the same language code and replace the country 
code with the code for Brazil, which is BR, defining the local code as pt-BR. You can then create the resource 
files as MyText.pt-PT.resx and MyText.pt-BR.resx. Table 2-1 shows examples of file names by locale.

Table 2-1.  Some Sample RESX File Names by Locale

Language (and Country) Folder Name

Spanish MyText.es.resx

Spanish (Mexico) MyText.es-MX.resx

Spanish (Spain) MyText.es-ES.resx

Portuguese MyText.pt.resx

Portuguese (Portugal) MyText.pt-PT.resx

Portuguese (Brazil) MyText.pt-BR.resx

Chinese (Traditional) (Taiwan) MyText.zh-Hant-TW.resx

Chinese (Simplified) (PRC) MyText.zh-Hans-CN.resx

Japanese MyText.ja.resx

■■ Note   To quickly copy the string values from the default .resx file to the additional language file, open the 
.resx file in the designer. Select all the rows with the mouse, right-click on the rows, and select Copy. Open 
the new .resx file in the designer, right-click in the designer, and select Paste. This process copies all names, 
values, and comments. Now you can just edit the values.



Chapter 2 ■ Working with Resource Files

26

Now you can enter the Spanish translations of the English text. These terms are simple enough, so they 
can be translated with either the Microsoft or Google online services. Once the text is translated, the .resx 
file should look like Figure 2-5.

Figure 2-5.  Spanish translated version of the .resx file

Figure 2-6.  Example of a partially translated .resx file

Here, a one-for-one translation was done. If the second language shares the same value for some of the 
strings in the default language, you have to translate only the ones with different values. For example, in the 
UK, the word color is spelled as colour, and you can make a .resx for that culture.

Add the new .resx as MyText.en-GB.resx, which designates the resource as having the English 
language and the locale as the United Kingdom. When that resource file opens up in the designer, add only 
the EyeColor string resource (see Figure 2-6).

If the app were running as UK English, at runtime the EyeColor resource property would find a match 
in the en-GB resource file and come back with Eye colour. Referencing the Age property would not find a 
match with the en-GB resource file and would fall back to the next closest match. In this case, it would be the 
default resource, and Age would be returned.

■■ Note   If you define some string resources in a shared library and you can't access them from another 
project, double-check the Access Modifier property and make sure it is set to Public.



Chapter 2 ■ Working with Resource Files

27

Android XML
Android apps have their own string resource format that is XML based. By convention, the file is named 
strings.xml and it is located in the res/values folder for the Android project. Xamarin Android apps use 
the same files, but the folder location is Resources/values.

To create an Android string resource file that has the same strings as the RESX example, the file should 
look like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <string name="Name">Name</string>
  <string name="Age">Age</string>
  <string name="EyeColor">Eye Color</string>
</resources>

To add additional language support, add a new strings.xml file, but in a values folder that has the 
language and culture as the suffix (separated by a dash (-). So for the Spanish example, there can be a 
strings.xml file in the Resources/values-es folder that looks like this:

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <string name="Name">Nombre</string>
  <string name="Age">Años</string>
  <string name="EyeColor">Color de los ojos</string>
</resources>

This resource file uses es to match all Spanish language users. To match by country and language, add -r 
and the country code. To go with the Portuguese examples, the folder names for European Portuguese and 
Brazilian Portuguese are values-pt-rPT and values-pt-rBR, respectively.

As with the .resx files, if you leave off a string translation, the resource engine looks for the closest 
match. The UK strings.xml file would be located in the Resources/values-en-rGB folder:

<?xml version="1.0" encoding="utf-8"?>
<resources>
  <string name="EyeColor">Eye Colour</string>
</resources>

Android prefixes the country or region code with an r character. The codes are not case sensitive, but 
the convention is to use a lowercase language code and an uppercase region code. Remember to use the r; 
otherwise, Android will reject that resource folder. Some example folder names are shown in Table 2-2.



Chapter 2 ■ Working with Resource Files

28

■■ Note I f you are running an Android emulator, it has an app installed named Custom Locale. If you run that 
app, you can see all the supported languages and locales for that version of Android.

There are two ways to use a string resource in Android. In an Android view, you can use syntax like the 
following:

<Button  
   android:id="@+id/myButton"
   android:layout_width="fill_parent"
   android:layout_height="wrap_content"
   android:text="@string/EyeColor"
   />

In code, use the GetString() method:

eyeLabel.Text = context.Resources.GetString(Resource.String.EyeColor); 

As with the .resx file, this will provide IntelliSense matching and compile time validation for the string 
resource value. If you misspell EyeColor as EYEColor, it will fail to compile.

Although Xamarin.Android does work in the native strings.xml format, it’s easier to use the .NET 
.resx files when working with multiple platforms with shared code.

Apple iOS String Dictionary
With iOS, Apple uses a different mechanism for localizing string resources. Instead of an XML-based storage 
format, Apple uses key-value pairs, and the default name of the file is Localizable.strings (but you can use 
any valid file name). The location is in an xx.lproj folder, where xx is the name of the language (and region, 
if used). If English is your default language, you will have a string resource file named Localizable.strings 
in a folder named en.lproj. (See Table 2-3 for some examples of names by locale.)

Table 2-2.  Select Android Values Folder Names by Locale

Language (and Country) Folder name

Spanish values-es

Spanish (Mexico) values-es-rMX

Spanish (Spain) values-es-rES

Portuguese values-pt

Portuguese (Brazil) values-pt-rBR

Chinese (Traditional) (Taiwan) values-zh-rTW

Chinese (Simplified) (PRC) values-zh-rCN

Japanese values-ja



Chapter 2 ■ Working with Resource Files

29

■■ Note  Versions of iOS prior to iOS 7 supported only language localization files. In iOS 7, region codes were added.

Using the .resx and string.xml examples from the RESX and Android examples, the 
Name/Age/EyeColor strings look like this:

/* The user name */
"Name"="Name";
/* The user's age */
"Age"="Age";
/* The user's eye color */
"EyeColor"="Eye Color";

It's important that the code-like syntax is correct. The code will not load if you are missing a semicolon 
at the end of the line. If your string has an embedded newline, it has to escaped with a "\n". (The double 
quotes and backslash characters also must be escaped.)

There are a few differences between the way iOS handles resource string names and the way Android 
and .NET handle them. Because Apple is using key-value pairs, the resource name can be any valid string. 
(You could have used Eye color for the string name instead of EyeColor).

With iOS, resource files get compiled into what is referred to as the Application bundle. With Xamarin.
iOS, you use the LocalizedString() method from the main bundle of the app to reference a string. To 
access a string resource with Xamarin.iOS, you can use syntax like this:

eyeLabel.Text = NSBundle.MainBundle. LocalizedString("EyeColor", "");

This code returns the localized value for "EyeColor". If a string resource for "EyeColor" does not exist, 
the value "EyeColor" is returned. The second parameter is a placeholder for a comment, which is a hint to a 
translator for the context of this string.

Table 2-3.  Sample iOS Localizable.strings Names by Locale

Language (and Country) Folder Name

Spanish es.lproj/Localizable.strings

Spanish (Mexico) es-MX.lproj/Localizable.strings

Spanish (Spain) es-ES.lproj/Localizable.strings

Portuguese pt.lproj/Localizable.strings

Portuguese (Brazil) pt-BR.lproj/Localizable.strings

Chinese (Traditional) zh-Hant.lproj/Localizable.strings

Chinese (Simplified) zh-Hans.lproj/Localizable.strings

Japanese ja.lproj/Localizable.strings



Chapter 2 ■ Working with Resource Files

30

C# makes that access code a little simpler and easier to read. A string extension posted by Thomas 
Rosenstein on Stackoverflow.com adds a method named t() to all strings. The following code was based on 
code originally posted on the Stackoverflow site (http://stackoverflow.com/a/6270189/206):

public static class Extension
{
   public static string t(this string translate)
   {
      return NSBundle.MainBundle.LocalizedString(translate, string.Empty);
   }
}

With that extension, the previous line of code can be written as follows:

eyeLabel.Text = "EyeColor".t();

Xamarin.iOS can use either the Localizable.strings resources or the .NET .resx files. As with 
Android, if you are sharing code across platforms, it's easier to use .resx files.

■■ Note  With the iOS LocalizedString() method, there is no compile time validation that the resource has 
been defined. If you misspell the name of the resource, it will compile without any errors and it will just use the 
resource name as the value of that resource.

http://stackoverflow.com/a/6270189/206


31© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3_3

CHAPTER 3

Working with Multilingual App 
Toolkit

I have a thing for tools.

—Tim Allen

Multilingual App Toolkit
Microsoft has a very handy tool for working with language translation files: the Multilingual App Toolkit, or 
MAT for short. It is an extension for Visual Studio 2013 and Visual Studio 2015.

The MAT provides the following functionality:

•	 It integrates with Visual Studio and becomes part of the workflow. It adds and 
manages translation files using the standard Visual Studio IDE. It works almost any 
Visual Studio project that uses .resx resource files.

•	 It provices seudo language support, which is used during testing. It allows you to 
find places in the application in which the localization is incomplete. The problem 
might be missing translations, translations that don’t fit, or other problems. The 
pseudo language appears as another XLIFF file and can be edited as with any other 
language.

•	 It provides machine language translation for many (but not all) languages. The 
translation is provided through the Microsoft Translator service.

•	 The translation files are stored in XLIFF 1.2 and can be used to send and receive 
resources to third-party translation services.

•	 It comes with a dedicated editor to easily edit and view translated text strings. By 
using the standard XLIFF state and state-qualifier attributes, a basis workflow can 
be used to manage the translation process. (More information about the XLIFF file 
format can be found in Chapter 5.)

http://dx.doi.org/10.1007/978-1-4842-2466-3_5


Chapter 3 ■ Working with Multilingual App Toolkit

32

Installation
There are a couple of ways to install the MAT. From within Visual Studio, you can install it by performing the 
following steps:

	 1.	 From the Tools menu, select Extensions and Updates. The Extensions and 
Updates dialog displays, which lets you install and update various addins for 
Visual Studio.

	 2.	 In the panel on the left side of the dialog, click Online. You see a list all available 
extensions that can be installed.

	 3.	 In the search box located in the upper-right corner of the dialog, type 
multilingual. This process filters the list of extensions and should show 
Multilingual App Toolkit at the top of the list (see Figure 3-1). At the time of this 
writing, version 4 is the latest edition.

Figure 3-1.  Selecting the Multilingual App Toolkit from the Extensions and Updates dialog

	 4.	 Select the Multilingual App Toolkit, making sure to get the latest version. A 
download button lights up.

	 5.	 Press the download button and follow the prompts to download and install the 
MAT. Restart Visual Studio if prompted do so.



Chapter 3 ■ Working with Multilingual App Toolkit

33

Another way to download and install the MAT is from the Visual Studio Gallery page. Follow these steps:

	 1.	 Shut down Visual Studio if it running.

	 2.	 With a web browser, go to https://visualstudiogallery.msdn.microsoft.com/.

	 3.	 In the Find search box, enter Multilingual App Toolkit and press Enter. The 
same list of extensions that was displayed from within Visual Studio is shown. 
Select the one labelled Multilingual App Toolkit v4.0 (or newer), which brings up 
the same extension that was displayed within Visual Studio, but with additional 
information. You can see reviews and a Q&A section.

	 4.	 Press the download button to download the installer for the Multilingual App 
Toolkit. It will be in the .MSI format.

	 5.	 After downloading the .MSI file, open up the folder that contains it. Right-click 
on the file and select Install.

	 6.	 Restart Visual Studio.

Using the MAT
Using the MAT is pretty straightforward. You create an app, put your text in a .resx resource file, enable the 
MAT, translate the text, test it, and finally ship it. To illustrate this process, you’ll create a very simple “Hello 
World” app by using Xamarin.Forms.

This app is a very simple one that shows how to use the resource files and how to change the language 
at runtime. Setting the language at runtime is different in UWP than it is with Xamarin.Android and 
Xamarin.iOS. You can use the Xamarin.Forms DependencyService to call platform-specific functionality 
from the shared codes.

The app displays a label and, with the tap of a button, you can change the language of the label from 
English, to Spanish, and then to Chinese.

Being able to change the language at runtime is a great tool to have at your disposal because you can 
quickly test different languages without having to force the device or emulator into another language. The 
author once changed his Windows Phone at a conference into another language and could not read the 
other language to set it back to English. Fortunately for the author, one of the MAT developers was at the 
same conference and had the same phone. By comparing the phones side by side, the author could find the 
language setting and was able to use his phone again.

Start up Visual Studio and create a new project. Select the Blank Xaml App (Xamarin.Forms Portable) 
template, which creates a solution with multiple projects, one for each target platform. Plus one more 
project that will contain the shared code as Portable Class Library (PCL). You can do this with a Shared Asset 
Library, but you’ll use PCL for this example. The New Project dialog should look like Figure 3-2.

https://visualstudiogallery.msdn.microsoft.com/


Chapter 3 ■ Working with Multilingual App Toolkit

34

This demo will be named HelloWorld, but you can name it anything you like.
After some churning and perhaps a prompt about connecting to a Mac or Windows 10 Target version, 

you get a Xamarin.Forms solution with multiple projects. It looks similar to Figure 3-3.

Figure 3-2.  Selecting the Blank XAML Xamarin.Forms Portable template



Chapter 3 ■ Working with Multilingual App Toolkit

35

The first thing that to do is edit the MainPage.xaml file. This page contains the XAML needed to render 
the page. The default code in that page should look something like this:

<?xml version="1.0" encoding="utf-8" ?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             xmlns:local="clr-namespace:HelloWorld"
             x:Class="HelloWorld.MainPage">

  <Label Text="Welcome to Xamarin Forms!"
           VerticalOptions="Center"
           HorizontalOptions="Center" />
</ContentPage>

You will make a few changes to this XAML file: replace the default label with a new label and some 
buttons. Replace the Label control with the following:

<StackLayout>
  <StackLayout Orientation="Horizontal">
    <Button x:Name="BtnEnglish" Text="English"/>
    <Button x:Name="BtnSpanish" Text="Spanish"/>
    <Button x:Name="BtnChinese" Text="Chinese"/>
  </StackLayout>
  <Label Text="Welcome to Xamarin Forms!" x:Name="LabelWelcome"

Figure 3-3.  Solution Explorer shows the files created by the Blank XAML Xamarin.Forms template



Chapter 3 ■ Working with Multilingual App Toolkit

36

           VerticalOptions="Center"
           HorizontalOptions="Center" />
</StackLayout>

The top-level StackLayout container organizes the controls from top to bottom. The first control in 
the StackLayout is another StackLayout container, which uses a horizontal layout and arranges its child 
controls from left to right.

Inside the inner StackLayout are three button controls. To keep this example simple, you can assign 
click event handlers for the buttons at runtime. To do so, you have to assign the Name property of each 
control.

After the inner StackLayout, a Label control is defined. Now you can add the resource files for the 
language translation. Create a resources folder to keep the project neat and tidy. Then add a resource file 
named MainPageText.resx to the resources folder. Edit the .resx file to include a string resource named 
Welcome (see Figure 3-4).

Figure 3-5.  Enabling the MAT

Figure 3-4.  Resource file with the string value that will be localizede

Save that .resx file. Now you can enable the MAT for the shared code project. From the Tools menu, 
select Multilingual App Toolkit and then Enable selection, as shown in Figure 3-5.

With the MAT enabled, you can add some languages to the project. From the Project menu, select 
Multilingual App Toolkit and then choose Add Translation Languages (see Figure 3-6).



Chapter 3 ■ Working with Multilingual App Toolkit

37

You see a dialog that lists all the languages that are supported, as shown in Figure 3-7. Many of the 
languages will have translation providers listed to the left of the language name. Languages that have 
providers available can be machine translated by the MAT.

Figure 3-6.  Invoking the Add Translation Languages dialog



Chapter 3 ■ Working with Multilingual App Toolkit

38

Figure 3-7.  Translation Languages dialog

There are two providers available. The first one, Microsoft Language Portal Provider, makes use of the 
professionally translated strings from Microsoft products. The second provider is the Microsoft Translator 
Provider, which uses Microsoft Translations Services (the same engine that the web site translate.bing.
com uses. 

Select the Spanish (es) and Chinese (Simplified) (zh-Hans) languages and press OK. The MAT 
creates two XLIFF 1.2 files in a MultilingualResources folder, one for each language. You should have a 
HelloWorld.es.xlf and a HellowWorld.zh-Hans.xlf file (see Figure 3-8).



Chapter 3 ■ Working with Multilingual App Toolkit

39

To keep the demo simple, you can delete the Windows 8.1 and Windows Phone 8.1 projects because the 
Android, iOS, and UWP projects are sufficient to show how resource files work. Right-click the Windows 8.1 
and Windows Phone 8.1 projects and select Remove.

Have the MAT machine translate the English string resource to Spanish and Chinese. Right-click 
the MultilingualResources folder, select Multilingual App Toolkit and then choose Generate Machine 
Translations. A progress dialog displays as each of the .xlf files is translated (see Figure 3-9).

Figure 3-8.  The XLF files are now part of the solution

Figure 3-9.  Progress is updated as each .xlf file is machine translated

You can view the .xlf files with the Multilingual Editor that is part of the MAT. Select the HellowWorld.
es.xlf file in Solution Explorer. The default action when you double-click the file is to open the .xlf 
file inside Visual Studio. That brings the file in as code and you'll see it in all its XML glory. To get the 
Multilingual Editor, right-click the file and select Open With. You should see a list of Visual Studio file editors 
with Multilingual Editor in the list.



Chapter 3 ■ Working with Multilingual App Toolkit

40

If you don’t see Multilingual Editor in the list, click the >Add button. Under Program, add the following:

"%ProgramFiles%\Multilingual App Toolkit\MultilingualEditor.exe"

Under Friendly Name, enter Multilingual Editor. Then click OK. You now have Multilingual Editor as 
an option when you select Open With for the .xlf files.

After the .xlf file opens in the Multilingual Editor, you should see something similar to Figure 3-10.

Figure 3-10.  Multilingual Editor

Figure 3-11.  Setting the state of the translated string resource

The Multilingual Editor provides an easy-to-use interface for the XML content stored in the .xlf file. It 
shows the resource ID, default language version of the text, and translated text. The bottom part of the editor 
is a grid that lists all the resource strings in the .xlf file. This example app only has a single resource string, 
so the contents of the grid match the contents in the entry fields.

Because the text was just machine translated, the State field is set to Needs Review. If you click the State 
field, you can set the set of values that can be selected (see Figure 3-11).



Chapter 3 ■ Working with Multilingual App Toolkit

41

Depending on workflow, you can change the value of State from Needs Review to Translated or Final. If 
you need an approval process for the translation, you may need to use both Translated and Final. 

You don’t need to change the State value at all to use the translated text. These fields are included 
to help you manage your development workflow, but have no impact on how the files are compiled into 
resources.

If you used machine translation and want to correct or otherwise change the translated text, you can 
make your edits here. Once the value of State has been changed to Translated or Final, the MAT skips over 
that string the next time that machine translation is used.

If you make any changes to a string resource with the Multilingual Editor, remember to press Save in the 
command ribbon. Once you make a change, the Save button is enabled. If you forget to press it, the editor 
prompts you to save your changes when you close the editor.

Next, build the project to generate the .resx files. The MainPageText.es.resx and MainPageText.zh-
Hans.resx files will be created if they do not yet exist or replaced if they do exist.

Now that you have the resources, it’s time to use them in the code. First, you can create an interface in 
the shared code for changing the language. This interface defines the signature of the method that is called 
to change the language. The actual code to change the language is defined in each platform project file. In 
the project for the portable library, add a new class and name it ICultureOverride. Then replace all the 
existing code with the following:

namespace HelloWorld
{
    public interface ICultureOverride
    {
        void SetCultureOverride(string culture);
    }
}

You are defining a single method named SetCultureOverride() that takes a locale as a string 
parameter. Now that the interface is defined in the PCL, you need to define the implementation in the 
platform projects. The Android and iOS classes are essentially identical; the UWP project uses slightly 
different code. By implementing an interface, you hide the platform-specific implementations from the 
portable code.

In the Android project, add the CultureOverride class. Replace the default code with the following:

using System.Globalization;
using System.Threading;

namespace HelloWorld.Droid
{
    public class CultureOverride : ICultureOverride
    {
        public void SetCultureOverride(string culture)
        {
            Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);
            Thread.CurrentThread.CurrentUICulture = Thread.CurrentThread.CurrentCulture;
        }
    }
}

www.allitebooks.com

http://www.allitebooks.org


Chapter 3 ■ Working with Multilingual App Toolkit

42

The code is fairly simple. You are defining a new class and it will implement the ICultureOverride 
interface. This means it needs to provide a definition for the SetCultureOverride method. This method 
has just two lines. The following line sets the user locale (i.e., language and country) to the specified locale 
string. It controls date/time, number, and currency formatting:

Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);

The second line sets the language used by the UI:

Thread.CurrentThread.CurrentUICulture = Thread.CurrentThread.CurrentCulture;

For Xamarin.Forms to use the platform code for the interface, you need to register the class via 
a metadata attribute. This registration allows the Xamarin.Forms DependencyService to locate the 
implantation class runtime. Above the name space definition, add the following line:

[assembly: Xamarin.Forms.Dependency(typeof(CultureOverride))]

Because the assembly attribute is referencing a class that is defined with a nondefault namespace, that 
namespace has to be added to the using list. Your class should now look like this:

using System.Globalization;
using System.Threading;
using HelloWorld.Droid;

[assembly: Xamarin.Forms.Dependency(typeof(CultureOverride))]
namespace HelloWorld.Droid
{
    public class CultureOverride : ICultureOverride
    {
        public void SetCultureOverride(string culture)
        {
            Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);
            Thread.CurrentThread.CurrentUICulture = Thread.CurrentThread.CurrentCulture;
        }
    }
}

For iOS, follow the same steps. The only difference is in the addition of the nondefault namespace. 
You end up with the following:

using System.Globalization;
using System.Threading;
using HelloWorld.iOS;

[assembly: Xamarin.Forms.Dependency(typeof(CultureOverride))]
namespace HelloWorld.iOS
{
    public class CultureOverride : ICultureOverride
    {
        public void SetCultureOverride(string culture)
        {



Chapter 3 ■ Working with Multilingual App Toolkit

43

            Thread.CurrentThread.CurrentCulture = new CultureInfo(culture);
            Thread.CurrentThread.CurrentUICulture = Thread.CurrentThread.CurrentCulture;
        }
    }
} 

For the UWP app, the syntax is slightly different. Instead of setting CurrentUICulture, you set 
ApplicationLanguages.PrimaryLanguageOverride. So the UWP version of CultureOverride.cs looks 
like this:

using Windows.ApplicationModel.Resources.Core;
using HelloWorld.UWP;

[assembly: Xamarin.Forms.Dependency(typeof(CultureOverride))]
namespace HelloWorld.UWP
{
    public class CultureOverride : ICultureOverride
    {
        public void SetCultureOverride(string culture)
        {
            Windows.Globalization.ApplicationLanguages.PrimaryLanguageOverride = culture;
            ResourceContext.GetForCurrentView().Reset();
        }
    }
}

This definition of the CultureOverride class also behaves differently; PrimaryLanguageOverride is a 
"sticky" setting. If you change the language to Chinese and then restart the app, the app comes up Chinese 
as the default language. If you are using code to change the language for testing, you have need to remember 
that. To avoid that behavior, set PrimaryLanguageOverride to string.Empty in your startup code.

Now that you have language change implementation code, you have to add code to use the string 
resource and to wire up the buttons to code that will change the language.

In the code-behind file for the XAML page, add the following method:

private void UpdateText()
{
    LabelWelcome.Text = resources.MainPageText.Welcome;
}

This method updates the Text property to the string resource named Welcome. By default, the string 
resource file named MainPageText.resx provides the value of the string resource named Welcome. The .NET 
Framework tries to match the CurrentUICulture to the right resource file. If the language is set to Spanish, 
it tries to load the values from MainPageText.es.resx. If it can’t find that file, the default of MainPageText.
resx is used.

When you specify both the language and the culture with the locale string, the .NET Framework tries to 
find a match based on language and culture. If a match is not found, it tries to match by just the language. 
If that match fails, the default resource file is used. This search is done for each of the individual string 
resources, not the entire resource file.



Chapter 3 ■ Working with Multilingual App Toolkit

44

Now add the method used to change the language and refresh the display:

private void ChangeCulture(string culture)
{
    DependencyService.Get<ICultureOverride>().SetCultureOverride(culture);
    UpdateText();
}

The Xamarin.Forms DependencyService finds the platform implementation for ICultureOverride 
and then calls the SetCultureOverride() method while passing in the locale. It then calls UpdateText() to 
refresh the display.

The final step is to wire up the button click event handlers to call the ChangeCulture() method:

public MainPage()
{
    InitializeComponent();

    BtnEnglish.Clicked += (sender, args) => { ChangeCulture("en"); };
    BtnSpanish.Clicked += (sender, args) => { ChangeCulture("es"); };
    BtnChinese.Clicked += (sender, args) => { ChangeCulture("zh-Hans"); };

    UpdateText();
}

For each button press, ChangeCulture() is called with the appropriate language passed in.
For more elaborate Xamarin.Forms apps, you can leverage the MVVM functionality that is provided 

with Xamarin.Forms and put more of the code in the XAML.

■■ Note  MVVM, which stands for Model-View-ViewModel, is a software architecture pattern that separates the 
data and business logic from the UI code. (MVVM is covered in greater detail in Chapter 4.)

You should be able to compile and run the app. The next chapter builds an entire app with source that 
can be downloaded.

When you run on Android, you should see a screen that looks like Figure 3-12.

http://dx.doi.org/10.1007/978-1-4842-2466-3_4


Chapter 3 ■ Working with Multilingual App Toolkit

45

Figure 3-12.  Sample app using the default language



Chapter 3 ■ Working with Multilingual App Toolkit

46

Figure 3-13.  Sample app using Spanish

Clicking the Spanish button changes the display to look like Figure 3-13.



Chapter 3 ■ Working with Multilingual App Toolkit

47

And clicking the Chinese button shows the display shown in Figure 3-14.

If you had not added the language change buttons, you could get the same results by changing the 
language in the settings app for the device.

These screenshots were taken from the Visual Studio Emulator for Android. When testing localization 
on an app, you should use an emulated device. If you change the language and can’t figure out how to 
change it back to the previous one, it's much easier to reset an emulator than an actual device.

Figure 3-14.  Sample app using Chinese (Simplified)



49© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3_4

CHAPTER 4

Island Menu Application

I know all those words, but that sentence makes no sense to me.

—Matt Groening

To demonstrate the process of localizing an application, in this chapter you’ll build one from scratch by 
using Xamarin.Forms and target Android, iOS, and UWP. You’ll start with just a single language, English, 
which will be written to support multiple languages. You’ll then add some additional languages. The last 
step is to add some platform-specific code to display the app name in the translated language on the app 
launcher screens.

About the App
The application is called Island Menu (named for the tourist board of the island of St. Brian, which is a 
Mediterranean island that is a popular tourist destination). With its deep harbor, cruise ships make daily 
stops there.

The tourist board will arrange to have the app available for guests on the cruise ships. The tourists then 
have the opportunity to see what restaurants are on the island.

■■ Note  You can’t find a Wikipedia page for the island of St. Brian; it exists only for the purpose of doing this 
application. But it looks like a nice place to visit.

The app will display a list of St. Brian restaurants, with locations and phone numbers. When users tap 
on a restaurant, they will see a page for that restaurant with a list of menu items; and each menu item will 
show the name of the dish, a description of that dish, and the price in euros.

When the localization is completed for the application, the labels will be translated to the current 
language. Date and number formatting will be set to the current culture. The menu data will be localized 
with the menu item name and description in the current language.

A completed version of the app can be downloaded from [INSERT SOURCE CODE URL HERE]. You 
should have a copy of it to use as a source for the images and data files.



Chapter 4 ■ Island Menu Application

50

App Architecture
You use Xamarin.Forms to build the Island Menu app, so you can share about 99% of the code. The 
remaining platform-specific code is for the localization of the app name.

One of the benefits of using Xamarin.Forms is that the MVVM display pattern is included right out of 
the box. Using MVVM, which stands for Model-View-View-Model, is a popular way of separating the UI code 
from the business logic.

At a high level, the model represents your data structure, which can be the data that comes from your 
database or some internal structure. It can represent the actual data or it can be part of the data access layer.

The view is the code that defines what appears onscreen. It handles the controls, layout, and some of 
the behavior. With Xamarin.Forms, the view can be constructed using XAML or in code. The sample app that 
you will build in this chapter uses XAML.

The view model abstracts the view to a set of properties and commands. It "binds" the data from the 
model to the view and maintains the state of the data. The view model has the code (or calls the code) that 
handles the saving and loading of data.

By using MVVM, you can take advantage of the data binding that comes with XAML and eliminate 
nearly all the code to send data to the screen and pull it back from the screen. You will use the declarative 
binding that comes with the Xamarin XAML to wire up properties exposed in the view model.

One thing that you don't get automatically with data binding is the translation of the text strings in the 
resource files. Although you could handle it by populating the controls at runtime with code, there is another 
way. XAML allows you to create converters to transform your code. You will add a converter that will use 
your resource files to get the translated data to populate the view.

Supplying Data to the App
With this type of app, you have a couple of choices for determining where the data comes from. Most of 
the time, it is pulled from a web service of some sort. Sometimes it may just be hard coded as part of the 
application. Most apps download the data to provide the most current information.

To keep this app simple for testing, you’ll use a set of embedded data, but the app will be built as if it 
were getting the data from a web service. For the purposes of this example application, you don't need a full 
web back end; the static data is enough.

Building the Island Menu App
You can start by creating a new application. The app created for this book was done with Visual Studio 2015 
running on Windows 10. If you are using different versions, some of the options may have different names or 
be unavailable. Development of Windows 10 UWP apps requires you to be running on Windows 10.

It's also assumed that you have Xamarin and the Multilingual App Toolkit (MAT) installed. And it's also 
assumed that you have the current Android SDK installed if you are doing the Android project. The version 
of Xamarin.Forms used for this book is 2.3.

To do iOS development with Xamarin, you have to have a Mac available with the Xamarin tools already 
installed. You can do all the coding and debugging from Visual Studio, but it uses the Mac to compile and run 
the iOS code. If a Mac is not available, you can follow along and do the Android and Windows 10 UWP apps.

■■ Note A lthough a Mac is needed to compile and debug the iOS project, you don't need an expensive Mac. As 
long as the Mac can run the current version of MacOS (what was formerly known as OS X), you should be set.



Chapter 4 ■ Island Menu Application

51

Start up Visual Studio and create a new project. Select the Blank Xaml App (Xamarin.Forms Portable) 
template. The sample project named the app IslandMenu. You can name it anything you want, but the 
namespaces used by the app are based on IslandMenu.

Visual Studio churns for a bit and generates a solution with multiple projects. For this sample 
application, you are doing only the Android, iOS, and Windows UWP projects. You should delete the 
Windows 8 and Windows Phone 8 projects from the solution. Although you can use them, stick to UWP for 
the Windows version of the app to keep things simple.

Now that the solution and projects are in place, you need to restore and update the nuget packages. 
Right-click the solution and select Manage Nuget Packages. If the Xamarin.Forms package needs to be 
updated, select it and press Update.

You may need to fill in a license dialog or accept additional package updates to get the current version 
of Xamarin.Forms. The PCL project and each platform project should be updated.

You need to add one more library: Newtonsoft.Json, which is the de facto standard on .NET for working 
with JSON files. While the nuget package manager is still loaded, click the online tab and type newtonsoft 
into the search tab. Select the Newtonsoft.Json package and press Install. This package is needed only for the 
PCL project.

Once the nuget packages are updated, it is a good time to compile the solution and make sure that all 
the components are in place. You should be able to compile and run each platform. The default template for 
a Xamarin.Forms app is the Xamarin.Forms version of “Hello World”.

If you can’t run the default template, you have to address the problem before continuing. The Xamarin 
supplied templates should work out of the box.

Create the Folders
Now that you have a working project, you can create some folders in the shared code project. Although not 
required, organizing the project into folders can make it easier to follow the code.

Right-click IslandMenu project and select Add and then Folder. Name the folder Models. The Models 
folder will contain the models for the restaurants and their menu items. You will come back and start with 
the models after creating the rest of the folders. Create the following folders:

	 1.	 Add a folder named Views. This folder will have the restaurant list view and the 
menu list views.

	 2.	 Add a folder named ViewModels. In this folder you will create the view model 
used by both views.

	 3.	 Add a folder named Services. The code that does the data access will be in this 
folder. Because this app is emulating a web service by loading static files, these 
files will be in the folder as well.

	 4.	 The Resources folder is the next folder to add. The .resx resource files will be 
in this folder, along with some helper classes. You could put the helper classes in 
another folder, but this should be sufficient.

	 5.	 The last folder to add is a folder named Images. You will bundle some images to 
use with each restaurant. If you pulled your data from a web service, you could 
send back URLs for each image. With this project, the images will be bundled 
in with the app. You can copy the images from the completed project file or 
substitute your own.

When you bundle images in with an app, you usually place the apps in the graphics folders for each 
platform, which allows you to use different-sized images for different resolutions. iOS has standard size, 2x 
Retina, and 3x Retina. Android has standard DPI, Medium DPI, High DPI, Extra High DPI, and extra.



Chapter 4 ■ Island Menu Application

52

This app takes a much simpler route to bundling the images. Instead of having multiple sets of images 
for the platform, there will be just a single set of images. You will add a custom IValueConverter that will 
take the name of the image and load it from the resource assembly.

Define the Models
Now it’s time to define the models for your data. When the app is running, there will be a list of restaurants, 
each showing a list of menus.

One way of defining models is from the bottom up. Start with the simplest model and work up to the 
more complex models, which means starting with the menu items. Define a model class for the menu items 
and name it RestaurantMenuItem, as described here.

■■ Note T he class is deliberately named RestaurantMenuItem instead of MenuItem because there are too 
many UI classes out there named MenuItem. Giving your model the same name as a UI element opens the door 
to all sorts of namespace complications. It would work, but it would take more code.

Right-click the Models folder and select Add and then Class. Name the class RestaurantMenuItem. 
This process creates the class RestaurantMenuItem.cs with the bare template of a class definition. Use the 
following for the class definition:

namespace IslandMenu.Models
{
    public class RestaurantMenuItem
    {
        public string Name { get; set; }
        public string Language { get; set; }
        public string Description { get; set; }
        public decimal PriceInEuros { get; set; }
    }
}

If you used a different namespace for your project, use your names. The field definitions are mostly self-
descriptive, as shown in Table 4-1.

Table 4-1.  Definitions of the RestaurantMenuItem Properties

Field Name Description

Name Name of the menu item

Language Locale code for this translation

Description Description of what the menu item is

PriceInEuros Local price of the item in euros (€)



Chapter 4 ■ Island Menu Application

53

■■ Note   This demo doesn’t handle currency conversion. If you want do so, you can find a web service that 
provides the level service to match your needs. There are free services, but their usage usually has fixed limits. 
Chapter 5 has more information about using currency exchange services.

Now that you have the menu item definition, it’s time to create the Restaurant class. Right-click 
the Models folder and add a new class named Restaurant. As with the menu item, a new file named 
Restaurant.cs is added. Replace the default class definition with the following, taking care to respect your 
own namespace rules:

namespace IslandMenu.Models
{
    public class Restaurant
    {
        public int ID { get; set; }
        public string Name { get; set; }
        public string Address1 { get; set; }
        public string Address2 { get; set; }
        public string Town { get; set; }
        public string PhoneNumber { get; set; }
        public string Fax { get; set; }
        public string Photo { get; set; }
        public List<RestaurantMenuItem> Menu { get; set; }
    }
}

The field definitions map to the functionality that is needed in the app. Definitions of the properties are 
shown in Table 4-2.

Table 4-2.  Definitions of the Restaurant Class Properties

Field Name Description

ID Placeholder for a record ID (not used here)

Name Name of the restaurant

Address1 Street address

Address2 Additional address information (not used here)

Town Name of the town

PhoneNumber Phone number with full country code

Fax Fax number (not used here)

Photo File name or URL of the photo

Menu Collection of menu items for the restaurant

http://dx.doi.org/10.1007/978-1-4842-2466-3_5


Chapter 4 ■ Island Menu Application

54

Each restaurant has just one language translation loaded at a time. Because the user will be changing 
the language from within the app, you can just load the set for the current language.

■■ Note  Why not create a restaurants list or a menu list class in your Models folder? The goal is to use a 
model to define what an entity is and keep the definitions simple. Collections of entities are what the view 
model classes manage.

Services Layer
Now that the data models are defined, it’s time to write the code to retrieve the data. If you were calling a 
web service to get the data, the data would probably come back in JSON or XML format. This app uses static 
JSON files that are embedded resources and passes them back as if they were called from a web service.

The first files added to the Services folder are data files. (Because the data is too long to put in this book, 
you can take them from the sample code posted here: [INSERT CODE URL HERE]). The data.json file is the 
default language version and is what you get if you have an object that is a List<Restaurant> and serialized 
as JSON. A brief portion of that JSON file looks like this:

[
  {
    "ID": 1,
    "Name": "First Chance Pizza",
    "Address1": "421 Cami de Sant Esteban",
    "Address2": null,
    "Town": "Carlyle",
    "PhoneNumber": "+70 971 24 13 55",
    "Fax": "+70 971 24 13 58",
    "Photo": "firstchancepizza.jpg",
    "Menu": [
      {
        "Name": "Classic Pizza",
        "CategoryId": 1,
        "Language": null,
        "Description": "Classic pizza, the way you get it in the USA",
        "PriceInEuros": 6.1
      },
      {
        "Name": "First Chance Pizza",
        "CategoryId": 1,
        "Language": null,
        "Description": "Our signature pizza, made with all local ingredients",
        "PriceInEuros": 12.20
      }
    ]
  },
  {
    "ID": 2,
    "Name": "Club Continental",
    "Address1": "Av. del Port de Sant Brian",
    "Address2": null,



Chapter 4 ■ Island Menu Application

55

    "Town": "Port de St Brian",
    "PhoneNumber": "+70 971 32 16 70",
    "Fax": null,
    "Photo": "clubcontinental.jpg",
    "Menu": [
      {
        "Name": "Club Continental",
        "CategoryId": 1,
        "Language": null,
        "Description": "Our signature sandwich.  The classic club, done perfectly",
        "PriceInEuros": 8.0
      },
...

This is an abbreviated set of data and does not have the closing JSON tags. The finished project has 
full versions of the .json files. For multiple languages, there are files that use the locale as part of the name, 
which is the same file-naming format used by the resource files. For example, the Spanish versions are 
named data-es.json or data-es-ES.json.

■■ Note   You should have been able to name the data file data.es.json, and the .NET resource manager 
would have loaded the correct file at runtime based on the current locale value. This did not work correctly, so 
you'll add some code to load the correct file.

Make sure to set the Build Action property to EmbeddedResource for each of the JSON files. This setting 
is needed to be able to access them at runtime.

■■ Note   If you add a file as a resource and it doesn't show up at runtime, check the Build Action property. 
If it's not set to EmbeddedResource, it will still compile, but it just won’t work.

Using the DependencyService
To pass the current locale to the service code, you have to get the current value. This code is platform specific 
and requires library methods not accessible from a PCL.

You can use a Xamarin.Forms implementation of dependency injection to provide access in the PCL to 
the user's locale (language and country) setting that is defined and set in the platform (Android, iOS, UWP) 
projects. The DependencyService in Xamarin.Forms allows you to define an interface in the shared code and 
then load the platform-specific implementation at runtime.

There are three sets of code that you need to build to use the DependencyService. Follow these steps:

	 1.	 Add an interface in the shared code to provide a definition of the fields to be used 
in the PCL code.

	 2.	 Add the platform-specific implementations and register them. This is where the 
fields that were defined in the interface get populated.

	 3.	 In the shared code, make an explicit call to the DependencyService and ask it for 
an implementation of that interface.



Chapter 4 ■ Island Menu Application

56

Defining the Interface
Right-click the IslandMenu project; add a new class and name it ICultureInfo.cs. This class defines the 
properties to be set in the platform-specific code. Replace the default code with the following:

namespace IslandMenu
{
    public interface ICultureInfo
    {
        System.Globalization.CultureInfo CurrentCulture { get; set; }
        System.Globalization.CultureInfo CurrentUICulture { get; set; }
    }
}

There's not much to it; the interface is just defining the CurrentCulture and CurrentUICulture 
properties. Now that the interface is defined, it is time to add the platform implementations.

Platform Implementations
Start with the Android project, IslandMenu.Droid. Right-click that project; add a new class and name it 
PlatformCultureInfo.cs. Replace the default code with the following:

using Xamarin.Forms;
using System.Threading;

[assembly: Dependency(typeof(IslandMenu.Droid.PlatformCultureInfo))]
namespace IslandMenu.Droid
{
    class PlatformCultureInfo : ICultureInfo
    {
        public System.Globalization.CultureInfo CurrentCulture
        {
            get
            {
                return Thread.CurrentThread.CurrentCulture;
            }
            set
            {
                Thread.CurrentThread.CurrentCulture = value;
            }
        }

        public System.Globalization.CultureInfo CurrentUICulture
        {
            get
            {
                return Thread.CurrentThread.CurrentUICulture;
            }
            set
            {



Chapter 4 ■ Island Menu Application

57

                Thread.CurrentThread.CurrentUICulture = value;
            }
        }
    }
}

This code provides the implementation of the ICultureInfo interface. It gets and sets the properties 
by using the Thread.CurrentThread object. This object is not available to use from the PCL, which is why it 
needs to be referenced from the implementation code at the platform project.

The Dependency attribute right above the namespace declaration registers this implementation. This 
registration allows the DependencyService to find this implementation at runtime.

Now you need to do the same thing for iOS. Add a new class to the IslandMenu.iOS project and also 
name it PlatformCultureInfo.cs. Use the following code:

using Xamarin.Forms;
using System.Threading;

[assembly: Dependency(typeof(IslandMenu.iOS.PlatformCultureInfo))]
namespace IslandMenu.iOS
{
    class PlatformCultureInfo : ICultureInfo
    {
        public System.Globalization.CultureInfo CurrentCulture
        {
            get
            {
                return Thread.CurrentThread.CurrentCulture;
            }
            set
            {
                Thread.CurrentThread.CurrentCulture = value;
            }
        }

        public System.Globalization.CultureInfo CurrentUICulture
        {
            get
            {
                return Thread.CurrentThread.CurrentUICulture;
            }
            set
            {
                Thread.CurrentThread.CurrentUICulture = value;
            }
        }
    }
}

As you can see, the only difference between the Android and the iOS code is the namespace. The code 
in the Windows 10 UWP project is a little different, however.



Chapter 4 ■ Island Menu Application

58

With the IslandMenu.UWP project, add the PlatformCultureInfo.cs class. Now replace the code with 
the following:

using System.Globalization;
using Xamarin.Forms;

[assembly: Dependency(typeof(IslandMenu.UWP.PlatformCultureInfo))]
namespace IslandMenu.UWP
{
    class PlatformCultureInfo : ICultureInfo
    {
        public System.Globalization.CultureInfo CurrentCulture
        {
            get
            {
                return CultureInfo.CurrentCulture;
            }
            set
            {
                CultureInfo.CurrentCulture = value;
            }
        }

        public System.Globalization.CultureInfo CurrentUICulture
        {
            get
            {
                return CultureInfo.CurrentUICulture;
            }
            set
            {
                CultureInfo.CurrentUICulture = value;
            }
        }
    }
}

The code is similar, but it uses the System.Globalization.CultureInfo object instead of the Thread.
CurrentThread object. The remaining piece of using the DependencyService will be added when the view 
model is defined later on.

Data Access
Now it’s time to add the code to retrieve the data. In the Services folder, add a new class and name it 
DataServices. Replace the default class definition with the following code:

using System.Collections.Generic;
using System.IO;
using System.Reflection;
using System.Threading.Tasks;



Chapter 4 ■ Island Menu Application

59

using IslandMenu.Models;
using Newtonsoft.Json;

namespace IslandMenu.Services
{
    public class DataServices
    {
        public async Task<IEnumerable<Restaurant>> GetRestaurants(string locale)
        {
            var language = GetClosestLanguage(locale);
            var assembly = typeof(DataServices).GetTypeInfo().Assembly;
            var json = "";

            var stream = ass�embly.GetManifestResourceStream($"IslandMenu.Services.
data{language}.json") ??

                         assembly.GetManifestResourceStream("IslandMenu.Services.data.json");

            using (var reader = new StreamReader(stream))
            {
                json = await reader.ReadToEndAsync();
            }

            var restaurants = JsonConvert.DeserializeObject<List<Restaurant>>(json);

            return restaurants;
        }

        private static string GetClosestLanguage(string locale)
        {
            var langs = new[]{ "es", "de", "zh" };
            var result = "";

            foreach(var lang in langs)
            {
                if (locale.StartsWith(lang))
                {
                    result = $"-{lang}";
                    break;
                }
            }

            return result;
        }
    }
}

You are defining two methods, one public and the other private. The GetClosestLanguage() method 
takes the locale string as the sole parameter. The method defines an internal string array called langs, which 
is a list of the supported locales for the data files.



Chapter 4 ■ Island Menu Application

60

■■ Note  In this example, the code that determines which language file to use is just an artifact of mocking 
up the web service with a local data call. A real-world application could just send the current locale to the web 
service and let the web service decide which language to support.

The method iterates over the langs array and checks to see whether any supported locale matches the 
passed-in locale string. With the StartsWith() method, the code matches by the closest matching item. If 
you get a match, prefix that match with a “-” and return that match. Otherwise, return an empty string. That 
empty string forces the selection of the default data file.

The real action is in the GetRestaurants() method. It’s defined as an async method and returns a Ta
sk<<IEnumerable<Restaurant>>. When writing code that consumes web services, you want to should use 
the async and await design patterns as much as possible. The last thing that you want is for your UI to freeze 
while data is being retrieved.

For a method that is reading from an embedded resource, the data access is fast enough that async calls 
are not really needed. One of the advantages of using the .NET Framework is the deep support using async 
methods. Even if the code doesn’t really need it, it’s good practice to follow the asynch design patterns.

Review the rest of the method line by line:

var language = GetClosestLanguage(locale);

As discussed previously, try to find the closest match for the specified locale:

var assembly = typeof(DataServices).GetTypeInfo().Assembly;

Using reflection, get a reference to the Assembly that has the data files as an embedded resource:

var stream = assembly.GetManifestResourceStream($"IslandMenu.Services.data{language}.json") ??
             assembly.GetManifestResourceStream("IslandMenu.Services.data.json");

Open the specified JSON file as a stream. Use the null-coalescing operator "??" to try loading the 
localized file. If it doesn't exist, the GetManifestResourceStream() method returns null. If that happens, 
load the default data file:

using (var reader = new StreamReader(stream))
{
    json = await reader.ReadToEndAsync();
}

Using the async method for reading, you can read the entire JSON file in as a string:

var restaurants = JsonConvert.DeserializeObject<List<Restaurant>>(json);

return restaurants;

With the JSON data in a string variable, use the Newtonsoft deserializer to load up a new list of 
restaurants and return that list to the calling method.



Chapter 4 ■ Island Menu Application

61

If you were calling a web service method, the same async pattern could be used like this:

static async Task<IEnumerable<Restaurant>> GetRestaurantsAsync(string path)
{
    List<Restaurant> restaurants = null;
    HttpResponseMessage response = await client.GetAsync(path);
    if (response.IsSuccessStatusCode)
    {
        restaurants = await response.Content.ReadAsAsync<List<Restaurant>>();
    }
    return restaurants;
}

From the view model, a call to get the data looks the same for both the static data and the web service call.

■■ Note O ne of the benefits of using the MVVM pattern is that you can test your data models and data access 
code completely separately from the UI code. The models are pure POCO (Plain Old Clr Objects, which are 
classes that have no other framework dependencies), and the data access code for web services is usually 
portable across various .NET implementations.

View Model
With the data model and the data access code defined, you can add a view model to the project. In the 
ViewModels folder, add a class named RestaurantsViewModel. As you did with the other classes, replace the 
default code with the following:

using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using IslandMenu.Models;
using IslandMenu.Services;
using Xamarin.Forms;

namespace IslandMenu.ViewModels
{
    public class RestaurantsViewModel
    {
        public string ImageUrl { get; private set; }
        public string LastUpdate { get; private set; }
        public IEnumerable<Restaurant> Restaurants { get; private set; }

        public INavigation Navigation { get; set; }

        public RestaurantsViewModel()
        {
            ImageUrl = "islandmenubanner.jpg";
            Restaurants = GetRestaurants().Result;
        }



Chapter 4 ■ Island Menu Application

62

        private async Task<IEnumerable<Restaurant>> GetRestaurants()
        {
            var ds = new DataServices();
            LastUpdate = String.Format(Resources.IslandMenu.LastUpdate, DateTime.Now.ToString("D"));
            var cultureInfo = Xamarin.Forms.DependencyService.Get<ICultureInfo>();

            return await ds.GetRestaurants(cultureInfo.CurrentCulture.Name);        }
    }
}

You are defining some properties and some code to populate the properties. When the view model 
is assigned to the view through the BindingContext property, the visual controls can be bound to those 
properties.

The ImageUrl property is used to display a background image on the main page. LastUpdate displays 
the date of the data access. Restaurants is the list that gets bound to the list in the view. The Navigation 
property allows the app to pass navigation control from the main page so that the menu page launches when 
the user taps the restaurant from the list.

The GetRestaurants() method is used to populate the data and is called from the view model’s 
constructor. More elaborate apps could wire up buttons to call this method to refresh the list. This 
implementation news up an instance of the data service and updates the LastUpdate property using 
the current date and a string resource as the template for string formatting. Although most of the string 
translation is in the view, it can be easier to work with parameterized strings in the view mode code.

The final part of the DependencyService is used in the GetRestaurants() method. Calling 
DependencyService.Get<ICultureInfo>() returns an instance of the platform implementation of the 
ICultureInfo interface.

XAML Markup Extensions
Now that you have the view model, you need to add two XAML markup extensions. One is an extension that 
lets you use localized text in the declarative XAML markup code. The other is a converter lets you load the 
images from the shared code resource file.

ImageResourceConverter
In the Resources folder, add a class named ImageResourceConverter. As usual, replace the default class 
definition with the following:

using System;
using Xamarin.Forms;

namespace IslandMenu.Resources
{
    public class ImageResourceConverter : IValueConverter
    {
        public object Convert(object value, Type targetType, object parameter, System.
Globalization.CultureInfo culture)
        {
            return ImageSource.FromResource("IslandMenu.Images." + (value ?? ""));
        }



Chapter 4 ■ Island Menu Application

63

        public object ConvertBack(object value, Type targetType, object parameter, System.
Globalization.CultureInfo culture)
        {
            throw new NotSupportedException();
        }
    }
}

An IValueConverter is a filter that takes a value and returns an interpreted version of that value. It can 
go in both directions: from the view model to the view and from the view back to the view model. The latter 
uses a method named ConvertBack(). Because this app is not doing two-way data binding on the images, 
you don’t need to do anything with the ConvertBack() method; it throws an exception if it’s called.

The method that you do care about is the Convert() method:

public object Convert(object value, Type targetType, object parameter, System.Globalization.
CultureInfo culture)
{
    return ImageSource.FromResource("IslandMenu.Images." + (value ?? ""));
}

It takes the passed-in value (the name of the image file) and constructs a fully qualified name with 
the namespace for the folder that has the images. With the full name, the code uses the ImageSource.
FromResource() method and returns an instance of ImageSource from the embedded resource. The 
ImageSource class is part of Xamarin.Forms and is used to load images from files or URLs. With this 
IValueConverter, you can bind images from the embedded resources to visual controls in the view.

TranslateExtension
The second XAML extension handles the resource file lookup of the translated strings. Add another class to 
the Resources folder and name it TranslateExtension. Once more, replace the default class definition with 
the following code:

using System;
using Xamarin.Forms;
using Xamarin.Forms.Xaml;

namespace IslandMenu.Resources
{
    // Define the default content property
    [ContentProperty("Text")]
    public class TranslateExtension : IMarkupExtension
    {
        public string Text { get; set; }

        public object ProvideValue(IServiceProvider serviceProvider)
        {
            if (Text == null)
                return null;



Chapter 4 ■ Island Menu Application

64

            // Return the localized resource if available, default resource if not
            return IslandMenu.ResourceManager.GetString(Text, IslandMenu.Culture);
        }
    }
}

■■ Note T his is an IMarkupExtension implementation, based on code originally posted by Craig Dunn  
at Microsoft. To see the original forum post, in which Craig describes his implementation, please see 
https://forums.xamarin.com/discussion/comment/82834/#Comment_82834.

An IMarkupExtension lets you extend XAML by adding new properties or functionality. In this case, you 
are adding a Translate verb to XAML. It defines the Text property as the content property, which means 
that whatever property that is passed the Translate extension, you can reference its value through the Text 
property. In the ProvideValue() method, you take the Text property (assuming that it’s not null) and call 
the GetString() method ResourceManager property of the IslandMenu resource. GetString()returns a 
localized value for that Text value if it exists. If a localized value is not defined, the default value is used.

Adding the Views
The next step is to add the XAML that makes up the views. To initially create the views, the author used a 
tool named Gorilla Player from UXDivers, which is an XAML preview tool that lets you view the XAML on a 
device or emulator as you type. Using Gorilla Player is not a requirement to be able to write the XAML code, 
but it provides a way to preview the code at design time.

Define Some Style
A benefit of using Gorilla Player is that it provides some nice sample code for styling the XAML. You will use 
one of the styles to quickly add a modern look to the app. 

Open the App.xaml file, which is in the root folder of the portable library. The default template for the 
App.xaml file looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<Application xmlns="http://xamarin.com/schemas/2014/forms"
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             x:Class="IslandMenu.App">
  <Application.Resources>

    <!-- Application resource dictionary -->

  </Application.Resources>
</Application>

Replace the line that contains Application resource dictionary with the following XAML markup:

<ResourceDictionary>
  <Color x:Key="CardBackgroundColor">#AA000000</Color>
  <Color x:Key="MessageBoxBackgroundColor">#99212331</Color>
  <Color x:Key="TitleBoxBackgroundColor">#99FFFFFF</Color>
  <Color x:Key="NameColor">#ffffff</Color>

https://forums.xamarin.com/discussion/comment/82834/#Comment_82834


Chapter 4 ■ Island Menu Application

65

  <Color x:Key="DepartmentColor">#b0bec5</Color>
  <Color x:Key="LocationColor">#40c4ff</Color>
  <Color x:Key="MoreIconColor">#1de9b6</Color>
  <Color x:Key="SocialColor">#40c4ff</Color>
  <Color x:Key="MessageColor">White</Color>
  <Color x:Key="TitleBoxTextColor">Black</Color>
  <Color x:Key="EntryBackgroundColor">#7778909c</Color>

  <Style x:Key="CardStyle" TargetType="Grid">
    <Setter Property="HeightRequest" Value="80"/>
    <Setter Property="Padding" Value="5,10,0,10"/>
    <Setter Property="BackgroundColor" Value="{DynamicResource CardBackgroundColor}"/>
  </Style>

  <Style x:Key="MessageBox" TargetType="Grid">
    <Setter Property="HeightRequest" Value="25"/>
    <Setter Property="Padding" Value="10"/>
    <Setter Property="BackgroundColor" Value="{DynamicResource MessageBoxBackgroundColor}"/>
  </Style>

  <Style x:Key="TitleBox" TargetType="Grid">
    <Setter Property="HeightRequest" Value="25"/>
    <Setter Property="Padding" Value="10"/>
    <Setter Property="BackgroundColor" Value="{DynamicResource TitleBoxBackgroundColor}"/>
  </Style>

  <Style x:Key="TitleStyle" TargetType="Label">
    <Setter Property="FontSize" Value="20"/>
    <Setter Property="TextColor" Value="{DynamicResource TitleBoxTextColor}"/>
    <Setter Property="FontAttributes" Value="Bold"/>
  </Style>

  <Style x:Key="TitleStyleSmall" TargetType="Label">
    <Setter Property="FontSize" Value="16"/>
    <Setter Property="TextColor" Value="{DynamicResource TitleBoxTextColor}"/>
  </Style>

  <Style x:Key="ShadowStyle" TargetType="BoxView">
    <Setter Property="HeightRequest" Value="1"/>
    <Setter Property="BackgroundColor" Value="Black"/>
  </Style>

  <Style x:Key="NameStyle" TargetType="Label">
    <Setter Property="FontSize" Value="16"/>
    <Setter Property="TextColor" Value="{DynamicResource NameColor}"/>
    <Setter Property="FontAttributes" Value="Bold"/>
  </Style>

  <Style x:Key="DepartmentStyle" TargetType="Label">
    <Setter Property="FontSize" Value="14"/>
    <Setter Property="TextColor" Value="{DynamicResource DepartmentColor}"/>
  </Style>



Chapter 4 ■ Island Menu Application

66

  <Style x:Key="LocationStyle" TargetType="Label">
    <Setter Property="FontSize" Value="9"/>
    <Setter Property="TextColor" Value="{DynamicResource LocationColor}"/>
    <Setter Property="FontAttributes" Value="Bold"/>
  </Style>

  <Style x:Key="MoreStyle" TargetType="Label">
    <Setter Property="FontSize" Value="10"/>
    <Setter Property="TextColor" Value="{DynamicResource MoreIconColor}"/>
    <Setter Property="FontAttributes" Value="Bold"/>
    <Setter Property="HorizontalTextAlignment" Value="End"/>
  </Style>

  <Style x:Key="SocialStyle" TargetType="Label">
    <Setter Property="FontSize" Value="10"/>
    <Setter Property="TextColor" Value="{DynamicResource SocialColor}"/>
  </Style>

  <Style x:Key="MessageLabelStyle" TargetType="Label">
    <Setter Property="TextColor" Value="{DynamicResource MessageColor}"/>
    <Setter Property="FontSize" Value="8"/>
    <Setter Property="VerticalOptions" Value="Center"/>
    <Setter Property="FontAttributes" Value="Bold"/>
  </Style>

  <Style x:Key="MessageEntryStyle" TargetType="Label">
    <Setter Property="FontAttributes" Value="Bold"/>
  </Style>
</ResourceDictionary>

This code defines some tags to set colors and other attributes in the XAML markup. Using styles defined 
at the application level makes it easier to make global changes to the styling of the application.

Using a Modular Design
You'll build the XAML in a modular fashion. There are two forms, the restaurant list and the menu list, and 
each uses the Xamarin.Forms ListView control.

The Xamarin.Forms ListView control provides a level of abstraction from the platform-specific UI 
toolkits. At runtime, the ListView control is rendered as the platform native control. On Android and 
Windows, the native ListView control is rendered. For iOS, the ListView control is rendered using the 
UITableView control.

With each ListView, ListItem is defined to display each item in the list. Although you could define 
the ListItem XAML inside the ListView XAML, for this project you define the ListItems as separate files. 
When you use design tools, it can be easier to work with the individual parts of a page.

RestaurantItem View
To define the restaurant item, right-click the Views folder; select Add and then New Item. From the left-side 
tree, select Cross-Platform under Visual C#. Then select Forms Xaml View, enter RestaurantItem.xaml, 



Chapter 4 ■ Island Menu Application

67

and click Add. An empty ContentView container is created. Replace the contents of the new view with the 
following (make sure to change the namespace if you did not use the IslandMenu name):

<?xml version="1.0" encoding="UTF-8"?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms" 
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" 
             xmlns:translate="clr-namespace:IslandMenu.Resources;assembly=IslandMenu"
             x:Class="IslandMenu.Views.RestaurantItem">
  <ContentPage.Resources>
    <ResourceDictionary>
      <translate:ImageResourceConverter x:Key="imageResourceCvt" />
    </ResourceDictionary>
  </ContentPage.Resources>
  <ContentView.Content>
    <StackLayout Spacing="0" Padding="0">
      <Grid Style="{DynamicResource CardStyle}">
        <Grid.ColumnDefinitions>
          <ColumnDefinition Width="90"/>
          <ColumnDefinition Width="*"/>
          <ColumnDefinition Width="5"/>
        </Grid.ColumnDefinitions>

        <Image Grid.Column="0" Source="{Binding Photo, Converter={StaticResource imageResourceCvt}}"/>
        <StackLayout Grid.Column="1" Spacing="0" Padding="0,5">
          <Label Text="{Binding Name}" Style="{DynamicResource NameStyle}"/>
          <Grid>
            <Grid.ColumnDefinitions>
              <ColumnDefinition Width="Auto"/>
              <ColumnDefinition Width="*"/>
            </Grid.ColumnDefinitions>
            <Grid.RowDefinitions>
              <RowDefinition Height="Auto"/>
              <RowDefinition Height="Auto"/>
            </Grid.RowDefinitions>
            <Label Text="{translate:Translate Address}" Style="{DynamicResource MessageLabelStyle}"  
                Grid.Row="0" Grid.Column="0"/>
            <Label Text="{Binding Address1}" Style="{DynamicResource DepartmentStyle}"  
                Grid.Row="0" Grid.Column="1"/>
            <Label Text="{translate:Translate Town}" Style="{DynamicResource MessageLabelStyle}" 
                 Grid.Row="1" Grid.Column="0"/>
            <Label Text="{Binding Town}" Style="{DynamicResource DepartmentStyle}"  
                Grid.Row="1" Grid.Column="1"/>
          </Grid>
        </StackLayout>
      </Grid>

      <BoxView BackgroundColor="Black" HeightRequest="0.5"></BoxView>



Chapter 4 ■ Island Menu Application

68

      <Grid Style="{DynamicResource MessageBox}">
        <StackLayout Orientation="Horizontal">
          <Label Text="{translate:Translate Phone}" Style="{DynamicResource MessageLabelStyle}" />
          <Labe�l Text="{Binding PhoneNumber}" HorizontalOptions="FillAndExpand" 

BackgroundColor="#33ffffff" ></Label>
        </StackLayout>
      </Grid>

      <BoxView Style="{DynamicResource ShadowStyle}"></BoxView>
    </StackLayout>

  </ContentView.Content>
</ContentView>

There is a bunch of stuff going on, most of it dealing with defining the layout. There is also code to 
handle data binding and localization. Starting at the top, you see this line:

xmlns:translate="clr-namespace:IslandMenu.Resources;assembly=IslandMenu"

This code defines the namespace so that the custom converters can be referenced. Define an XAML key 
to let you call the IMarkupConverter to load images from the assembly:

<ContentPage.Resources>
  <ResourceDictionary>
    <translate:ImageResourceConverter x:Key="imageResourceCvt" />
  </ResourceDictionary>
</ContentPage.Resources>

This code defines a key named imageResourceCvt that can be used in the XAML markup. At runtime, it 
invokes the ImageResourceConverter class. This converter, which is used for the restaurant photo, is set up 
with this line:

<Image Grid.Column="0" Source="{Binding Photo, Converter={StaticResource 
imageResourceCvt}}"/>

Using XAML data binding, the app gets the value of the Photo property and sends it through the 
ImageResourceConverter. The converter attempts to load the image from the assembly and pass the bitmap 
stream to the image control. What is not shown here is the way the BindingContext property of the image 
control is being set. The BindingContext property connects the owner of the Photo property of the image, 
which is set at runtime when the view model is instantiated.

The text controls are defined like the following XAML:

<Label Text="{translate:Translate Address}" Style="{DynamicResource MessageLabelStyle}" 
Grid.Row="0" Grid.Column="0"/>

<Label Text="{Binding Address1}" Style="{DynamicResource DepartmentStyle}" Grid.Row="0" 
Grid.Column="1"/>

The first Label control uses the TranslateExtension to take the Address property and look up the value 
from the resource files. The second label uses the regular data binding to assign the value of the Address1 
property to the Label control.



Chapter 4 ■ Island Menu Application

69

■■ Note  You probably noticed that the IMarkupExtension was defined with the class name 
TranslateExtension, but referenced it in the XAML markup as Translate. It is just a naming convention that 
goes back years to when extensions were first added to WPF.

RestaurantList view
Now that you have the restaurant item, it's time to create the restaurant list. Add a new view to the Views 
folder, but instead of using the Forms Xaml View template, select the Forms Xaml Page template and add a 
new view as RestaurantList.xaml. The XAML in the view is a bit simpler than the previous view. Replace 
the templated view with the following:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" 
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             xmlns:views="clr-namespace:IslandMenu.Views;assembly=IslandMenu"
             xmlns:translate="clr-namespace:IslandMenu.Resources;assembly=IslandMenu"
             Title="{translate:Translate AppName}"
             x:Class="IslandMenu.Views.RestaurantList">
  <ContentPage.Resources>
    <ResourceDictionary>
      <translate:ImageResourceConverter x:Key="imageResourceCvt" />
    </ResourceDictionary>
  </ContentPage.Resources>
  <ContentPage.Content>
    <Grid>
      <Image Opacity="0.5"
                                   x:Name="img"
                                   Source="{Bin�ding ImageUrl, Converter={StaticResource 

imageResourceCvt}}"
                                   Scale="1"
                                   Aspect="AspectFill"/>
      <StackLayout Padding="10,10,10,0">
        <Grid HeightRequest="150">
          <Grid Style="{DynamicResource TitleBox}" >
            <StackLayout >
              <Labe�l Text="{translate:Translate AppDescription}" Style="{DynamicResource 

TitleStyle}"></Label>
              <Labe�l Text="{Binding LastUpdate}" Style="{DynamicResource TitleStyleSmall}" 

x:Name="LastUpdateLabel"></Label>
            </StackLayout>
          </Grid>
        </Grid>
        <ListView ItemsSource="{Binding .}"
                                                  SeparatorVisibility="None"
                                                  BackgroundColor="Transparent"
                                                  SeparatorColor="#DFDFDF"
                                                  HasUnevenRows="false"
                                                  RowHeight="160"



Chapter 4 ■ Island Menu Application

70

              ItemTapped="OnItemTapped" >
          <ListView.ItemTemplate>
            <DataTemplate>
              <ViewCell>
                <views:RestaurantItem  />
              </ViewCell>
            </DataTemplate>
          </ListView.ItemTemplate>
        </ListView>
      </StackLayout>
    </Grid>
  </ContentPage.Content>
</ContentPage>

Starting at the top, you see the namespace declaration for the converters, just like the restaurant item 
view. There is one more namespace declaration:

xmlns:views="clr-namespace:IslandMenu.Views;assembly=IslandMenu"

This code allows this page to reference the restaurant item view that you just created. There is also a 
Title attribute defined:

Title="{translate:Translate AppName}"

This code should localize the title of the app when it is onscreen. As with the restaurant item view, you 
have XAML markup to load an image from the resource assembly, and the Translate extension is used to 
localize the text.

For the ListView definition, there is the following block of code:

<ListView ItemsSource="{Binding .}"
      SeparatorVisibility="None"
      BackgroundColor="Transparent"
      SeparatorColor="#DFDFDF"
      HasUnevenRows="false"
      RowHeight="160"
      ItemTapped="OnItemTapped">
  <ListView.ItemTemplate>
    <DataTemplate>
      <ViewCell>
        <views:RestaurantItem  />
      </ViewCell>
    </DataTemplate>
  </ListView.ItemTemplate>
</ListView>

RestaurantList code-behind
At runtime, the restaurant item view that you created is used where you have the views:RestaurantItem 
tag, and there is an event handler for ItemTapped. The handler is defined in the code-behind file named 
RestaurantList.xaml.cs.



Chapter 4 ■ Island Menu Application

71

Open up that file now. This is where you instantiate the view model and wire it up to the view. You can 
also define the event handler listed in the XAML page. Replace the default contents of the RestaurantList.
xaml.cs file with the following:

using IslandMenu.Models;
using IslandMenu.ViewModels;
using Xamarin.Forms;
using Xamarin.Forms.Xaml;

namespace IslandMenu.Views
{
    [XamlCompilation(XamlCompilationOptions.Compile)]
    public partial class RestaurantList : ContentPage
    {
        RestaurantsViewModel vm;
        public RestaurantList()
        {
            InitializeComponent();

            vm = new RestaurantsViewModel {Navigation = Navigation};

            img.BindingContext = vm;
            LastUpdateLabel.BindingContext = vm;

            BindingContext = vm.Restaurants;
        }

        private async void OnItemTapped(object sender, ItemTappedEventArgs e)
        {
            Restaurant restaurant = e.Item as Restaurant;

            await this.Navigation.PushAsync(new MenuList(restaurant));

            ((ListView)sender).SelectedItem = null;
        }
    }
}

There's not a lot of code here. Notice the compiler attribute that is decorating the page class:

[XamlCompilation(XamlCompilationOptions.Compile)]

This attribute, which was added with Xamarin.Forms 2, allows the XAML to be compiled into 
intermediate language (IL) when you compile the project. Prior to Xamarin.Forms 2, when you created your 
views in XAML, they were stored in the app as XAML text and compiled and loaded at runtime.

When you add this attribute, the XAML compiler (XAMLC) compiles the view at compile time. Why 
should you do this? You get three immediate benefits with XAMLC:

•	 The XAML markup is compiled and validated at compile. Without the XAMLC step, 
errors in the XAML are not detected until you actually ran the app.

•	 Because the XAML is already compiled to IL, the time it takes to create and load a 
new view at runtime is faster.



Chapter 4 ■ Island Menu Application

72

•	 And you get a slightly smaller file size because the XAML files are no longer in the 
final build of the app.

Take a look at the sole property of the view model and the constructor:

RestaurantsViewModel vm;
public RestaurantList()
{
    InitializeComponent();

    vm = new RestaurantsViewModel {Navigation = Navigation};

    img.BindingContext = vm;
    LastUpdateLabel.BindingContext = vm;

    BindingContext = vm.Restaurants;
}

The view model is a property of the view. In the constructor of the view, the view model is created and 
gets passed in the Navigation property. The Navigation property is used to enable the menu items page to 
return back to the restaurant list page.

The view model is assigned as the BindingContext of the image and last update label controls. 
Remember that you set the localized value of the LastUpdate property in the GetRestaurants() method of 
the view model. Assigning the BindingContext of the label is the only code needed to set the Test property 
of that label to the current value of the LastUpdate property.

Set the BindContext of the page to the view model's Restaurants property, which binds the list of 
restaurants to the ListView control.

■■ Note   You may have wondered why you didn't just assign the view model's Restaurants list directly to the 
ListView control. That process does work and is an acceptable way to accomplish the same result. The XAML 
data binding works in a hierarchy, and child controls inherit the data binding of their parents.

Finally, the OnItemTapped event handler is defined:

private async void OnItemTapped(object sender, ItemTappedEventArgs e)
{
    Restaurant restaurant = e.Item as Restaurant;

    await this.Navigation.PushAsync(new MenuList(restaurant));

    ((ListView)sender).SelectedItem = null;
}

This listing refers to code that has not been written yet (but is next on the agenda). The ListView passes 
the current item from its data binding as the Item property of the ItemTappedEventArgs parameter. That 
parameter is passed in as part of the event signature.

Assign the item using the as operator to make a safe cast to the type that you would get back. Then use 
the PushAsync() method of the Navigation property to push a new instance of the menu list while passing 
the selected restaurant to the menu list. It won’t compile until after you create the menu list.



Chapter 4 ■ Island Menu Application

73

The last line clears the current selection of the ListView. This is a defensive programming practice. 
If the code had deleted the selected item when it was tapped, the selection would be invalid. Clearing the 
selection keeps the code from doing unexpected things. It probably wasn't needed for this example, but it's a 
good pattern to follow.

MenuListItem View
Now it's time to create the menu list that was just referenced from the restaurant list. Like the restaurant list, 
there are two files: one for the menu item and the other for the list. Start with the menu item. Following the 
same steps that was used for the restaurant item view, add a Forms Xaml View named MenuListItem.xaml to 
the Views folder.

Open up the newly created view and replace the default markup code with the following:

<?xml version="1.0" encoding="UTF-8"?>
<ContentView xmlns="http://xamarin.com/schemas/2014/forms" 
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml" 
             xmlns:translate="clr-namespace:IslandMenu.Resources;assembly=IslandMenu"
             x:Class="IslandMenu.Views.MenuListItem">
  <ContentView.Content>
    <Grid Style="{DynamicResource MessageBox}">
      <StackLayout Padding="0,5">
        <Label Text="{Binding Name}" Style="{DynamicResource NameStyle}"/>
        <Label Text="{Binding Description}" Style="{DynamicResource DepartmentStyle}"/>
        <StackLayout Orientation="Horizontal">
          <Label Text="{translate:Translate Price}" Style="{DynamicResource DepartmentStyle}"/>
          <Labe�l Text="{Binding PriceInEuros, StringFormat='{0:0.00}'}" 

Style="{DynamicResource DepartmentStyle}"/>
          <Label Text="{translate:Translate EUR}" Style="{DynamicResource DepartmentStyle}"/>
        </StackLayout>
        <BoxView Style="{DynamicResource ShadowStyle}"></BoxView>
      </StackLayout>
    </Grid>
  </ContentView.Content>
</ContentView> 

This is fairly straightforward and does only one new thing. Take a look at the data binding for the price 
control:

<Label Text="{Binding PriceInEuros, StringFormat='{0:0.00}'}" Style="{DynamicResource 
DepartmentStyle}"/>

In addition to binding the value of the PriceInEuros property to the Text property of the Label control, 
you are using the StringFormat of the Binding to manipulate the value of the PriceInEuros property.

StringFormat works very much like String.Format, with a couple of differences: the format string is 
enclosed inside single quote characters, and the placeholder for the property value is always 0. The "0.00" 
format mask formats the value as a number with two decimal places and uses the current culture's decimal 
point character. For some cultures, the decimal point character is ".", and the numbers would look like 1.23 
or 19.10. Other cultures use "," because the decimal placeholder and the two previous values would display 
as 1,23 and 19,10. The StringFormat attribute lets the app easily handle cultural formatting in the XAML 
markup code.



Chapter 4 ■ Island Menu Application

74

MenuList View
With the menu item defined, you can now define the menu list. Add a Forms Xaml page and name it 
MenuList.xaml. As with the other XAML files, replace the default contents with the following:

<?xml version="1.0" encoding="UTF-8"?>
<ContentPage xmlns="http://xamarin.com/schemas/2014/forms" 
             xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
             xmlns:views="clr-namespace:IslandMenu.Views;assembly=IslandMenu"
             xmlns:translate="clr-namespace:IslandMenu.Resources;assembly=IslandMenu"
             x:Class="IslandMenu.Views.MenuList">
  <ContentPage.Resources>
    <ResourceDictionary>
      <translate:ImageResourceConverter x:Key="imageResourceCvt" />
    </ResourceDictionary>
  </ContentPage.Resources>
  <ContentPage.Content>
    <Grid>
      <StackLayout Padding="10,10,10,10">
        <Grid HeightRequest="200">
          <Image Opacity="0.75"
               x:Name="img1"
               Source="{Binding Photo, Converter={StaticResource imageResourceCvt}}"
               Scale="1"
               Aspect="AspectFill"/>
          <Grid Style="{DynamicResource TitleBox}">
            <StackLayout Spacing="1">
              <Label Text="{Binding Name}" Style="{DynamicResource TitleStyle}"></Label>
              <Label Text="{Binding Address1}" Style="{DynamicResource TitleStyleSmall}"></Label>
              <StackLayout Orientation="Horizontal" HorizontalOptions="FillAndExpand">
                <Label Text="{Binding Town}" Style="{DynamicResource TitleStyleSmall}"></Label>
                <Label Text="{Binding PhoneNumber}" Style="{DynamicResource TitleStyleSmall}"  
                     HorizontalOptions="EndAndExpand"></Label>
              </StackLayout>
            </StackLayout>
          </Grid>
        </Grid>

        <ListView ItemsSource="{Binding Menu}"
              SeparatorVisibility="None"
              BackgroundColor="Transparent"
              SeparatorColor="#DFDFDF"
              HasUnevenRows="True"
              RowHeight="100">
          <ListView.ItemTemplate>
            <DataTemplate>
              <ViewCell BindingContextChanged="OnBindingContextChanged">
                <views:MenuListItem  />
              </ViewCell>
            </DataTemplate>
          </ListView.ItemTemplate>



Chapter 4 ■ Island Menu Application

75

        </ListView>
      </StackLayout>
    </Grid>
  </ContentPage.Content>
</ContentPage>

This is very similar in design to the way the data binding for the menu list was defined. If you look at 
the ListView, there are two new things: the HasUnEvenRows property of the ListView is set to true. And the 
ViewCell is a little different:

<ViewCell BindingContextChanged="OnBindingContextChanged">
  <views:MenuListItem  />
</ViewCell>

You have assigned an event handler to the BindingContextChanged event. This event gets fired for each 
new row in the list. It is used to change the height of the ListView cell when the menu item description is 
wide enough to word wrap onto another line. 

■■ Note  Your layout should be flexible enough to handle string lengths that are longer than what you expected. 
When translating a sentence to another language, the translated sentence may be quite a bit longer than the 
original text. For example, the English phrase "My friend is a nervous passenger" could be translated as "Lu ma 
'amicu è un passageru incheta Diana" in the Corsican language. That's almost ten characters longer.

MenuList Code-behind
With the XAML part of the menu list defined, you need to add some code to the code-behind file. Open up 
the MenuList.xaml.cs file and replace the default code with the following:

using System;
using IslandMenu.Models;
using Xamarin.Forms;
using Xamarin.Forms.Xaml;

namespace IslandMenu.Views
{
    [XamlCompilation(XamlCompilationOptions.Compile)]
    public partial class MenuList : ContentPage
    {
        public MenuList(Restaurant restaurant)
        {
            BindingContext = restaurant;
            this.Title = restaurant.Name;
            InitializeComponent();
        }

        private void OnBindingContextChanged(object sender, EventArgs e)
        {
            base.OnBindingContextChanged();



Chapter 4 ■ Island Menu Application

76

            var cell = (ViewCell) sender;
            RestaurantMenuItem item = (RestaurantMenuItem)cell.BindingContext;

            var l = item.Description.Length;
            var offset = (l / 50) * 20;

            cell.Height = 100 + offset;
        }
    }
}

This is very similar to the other code-behind changes. Look at the constructor:

public MenuList(Restaurant restaurant)
{
    BindingContext = restaurant;
    this.Title = restaurant.Name;
    InitializeComponent();
}

When this page is created from the restaurant list, it was passed the currently selected restaurant. In the 
constructor, that restaurant is assigned as the BindingContent for the page. You also set the Title property 
of the page to the restaurant name.

The only other code in this class is the event handler for the BindContextChanged event, which gets 
fired for each cell when it is instantiated:

private void OnBindingContextChanged(object sender, EventArgs e)
{
    base.OnBindingContextChanged();

    var cell = (ViewCell) sender;
    RestaurantMenuItem item = (RestaurantMenuItem)cell.BindingContext;

    var l = item.Description.Length;
    var offset = (l / 50) * 20;

    cell.Height = 100 + offset;
}

This code casts the sender parameter as a ViewCell. From the ViewCell, it can cast the BindingContext 
as the current RestaurantMenuItem. Once it has a reference to the selected RestaurantMenuItem, it can 
check the length of its Description property and adjust the height accordingly. This is an extremely easy 
way to determine the display length of a string, but it is close enough for demo purposes. The actual length 
depends on the font and the actual text.



Chapter 4 ■ Island Menu Application

77

Wiring Up the View
Now that you have the models, the views, and the view model, there is just one more bit of code necessary to 
wire it up. Open up the App.xaml.cs file. The default constructor should look a little bit like this:

public App()
{
    InitializeComponent();

    MainPage = new IslandMenu.MainPage();
}

The MainPage object is the default page created by the Xamarin project template. Change that code to 
the following:

public App()
{
    InitializeComponent();

    MainPage = new NavigationPage(new Views.RestaurantList());
}

The code is changed to create an instance of the RestaurantList, which gives it the capability to 
handle the navigation to other pages.



Chapter 4 ■ Island Menu Application

78

Figure 4-1.  Restaurant list on Android

Running the Code
You should be able to compile and the run the code. If it doesn't compile, just take the completed project 
from [INSERT SOURCE CODE URL HERE] and follow along that code. The running Island Menu on Android 
looks like Figure 4-1 after it loads.



Chapter 4 ■ Island Menu Application

79

Figure 4-2.  Menu list on Android

If you tap the First Chance Pizza item, you see the page shown in Figure 4-2.



Chapter 4 ■ Island Menu Application

80

Figure 4-3.  Restaurant list on the iPhone

For iOS, you see something like the page in Figure 4-3.



Chapter 4 ■ Island Menu Application

81

Figure 4-4.  Restaurant list on Windows 10 Mobile

For Windows 10 Phone, you see something like the page in Figure 4-4.



Chapter 4 ■ Island Menu Application

82

And for a Windows 10 Desktop application, you see the page shown in Figure 4-5.

Running the UWP desktop app looks just like the Windows 10 Mobile version, but with the addition of 
the miminize, maximize, and close buttons. A Windows 10 UWP compiled with Xamarin.Forms runs the 
same code on the PC and the phone.

■■ Note   The Android and Windows screenshots were taken from the Windows 10 and Android emulators that 
come with Visual Studio. The iPhone screenshot was taken with the Xamarin iOS Simulator for Windows.

Localizing the App
Now that the app works on each platform in English, it's time to provide support for some additional 
languages. You will add Spanish, German, and Chinese (Simplified).

You can use the MAT to generate the additional resource files. For the purposes of this example, the 
MAT machine will translate the files. You would not want to ship an app that was machine translated, but 
this gets you one step closer. It takes care of the string resources in the resource file.

Figure 4-5.  Restaurant list on Windows 10 Desktop



Chapter 4 ■ Island Menu Application

83

Translating the data file is a bit tricky. In a real application, the data would have come from some 
database, already translated for you. In this case, the code uses JSON files embedded in the app. You can 
make translated versions for each language. The completed app at [INSERT SOURCE URL HERE] has copies 
of the translated files for you to use.

The completed app has translations that were done by professionals. The Spanish translation was by 
Maximiliano Diaz through SmartCAT (www.smartcat.ai/). Maкcим Mopкoвкин did the Chinese translation, 
also through SmartCAT. The German translation was done by David Krings, a co-worker of the author and 
native German speaker.

■■ Note   The value that a human translation adds to your app can’t be overemphasized. It is the difference 
between having an app that feels native to the user to one that just doesn't feel right.

Using the MAT
Make sure that the Island Menu PCL project is the currently selected project. It doesn't have to be the startup 
project; it just needs to be the selected one. From the Tools menu, select Multilingual App Toolkit and then 
select Enable Selection.

Now add the additional languages to the project. From the Project menu, select Multilingual App 
Toolkit and then Add Translation Languages. When the Translation Languages dialog appears, select 
Chinese (Simplified [zh-Hans], German [de], and Spanish [es]. Press OK to add the languages to the project.

This demo project uses single dialects of each language, which eliminates the need to create language 
and country locale versions, such as es-MX for the Mexican dialect of Spanish.

The MultilingualResources folder is created for the project, so add the XLF files to the folder. Right-
click the MultilingualResources folder and select Multilingual App Toolkit and then Generate Machine 
Translations. Each XLF file is then translated by the Microsoft translation services.

The next step is to compile or rebuild the project, which creates or updates the RESX files for the 
additional languages.

For the data files, you need to have data-es.json, data-de.json, and data-zh.json. You can translate 
them manually by copying the English data.json file and doing the translation yourself or just take the 
translated files from the completed app.

http://www.smartcat.ai/


Chapter 4 ■ Island Menu Application

84

Figure 4-6.  Restaurant list in Spanish

When you run the app now on a device or emulator set up for Spanish, the Restaurant list looks like 
Figure 4-6.

The title now appears in Spanish. The Last updated… string that you updated in code is also translated 
into Spanish, as are the labels on the list. Most of the rest of the text that is associated the restaurants is still 
in the original language. If you were looking for the restaurant when you were on St. Brian, you would be 
looking for it in the original language (see Figure 4-7).



Chapter 4 ■ Island Menu Application

85

For the menu items, the description of the item has been translated to the user's language. The name 
of the menu item is in both the original language and the translated language, which makes it easier for 
the user to order that dish at the restaurant. The numeric formatting of the price now matches the country 
setting from the user's preferences.

If you change the language to German and run the app, you'll see the text strings replaced with the 
German translation, as shown in Figure 4-8.

Figure 4-7.  Menu list in Spanish



Chapter 4 ■ Island Menu Application

86

Figure 4-8.  Restaurant list in German

There is one more language translation, Chinese (Simplified), as shown in Figure 4-9.



Chapter 4 ■ Island Menu Application

87

Platform Specifics
Although resource files and JSON files handle the translations within the app, they don't handle everything. 
The name of the app as it appears on the device has to be localized at the platform level. The text and media 
resources for each app store have to be translated separately from the app itself.

Android 

You can use the Android style of string localization to properly localize the name of the app. It is the source 
for the text that appears in the Android launcher.

Select the Resources folder of the IslandMenu.Droid project. There should be a values folder inside 
the Resources folder. Add the following folders: values-de, values-es, and values-zh. If you create folders for 
country versions of a language, remember to include an r in front of the country code (e.g. values-es-rMX for 
Mexican Spanish).

Add a strings.xml file to the values folder. You'll create an Android style string resource that can be 
used for the application name. Technically, it sets the display label of the main activity, but that's how it 
works on Android. Use the following for the contents of the string.xml file:

Figure 4-9.  Restaurant list in Chinese (Simplified)



Chapter 4 ■ Island Menu Application

88

<?xml version="1.0" encoding="utf-8" ?>
<resources>
  <string name="app_name">Island Menu</string>
</resources>

You have to create the same file in the values-de, values-es, and values-zh folders. Use the same value 
from the AppName string in the RESX file for each language in the portable library project. For example, the 
strings.xml file in the values-de folder looks something like this:

<?xml version="1.0" encoding="utf-8" ?>
<resources>
  <string name="app_name">Menú Isla</string>
</resources>

Open the MainActivity.cs file from the IslandMenu.Droid project. This is the Android activity that gets 
run when the Android app starts up. It has the code to initialize and run the Xamarin.Forms code.

Above the definition of the MainActivity class are some attributes. Xamarin uses .NET style attributes 
as way to set activity properties that would otherwise need to go in the AndroidManifest.xml file. It should 
look something like this:

[Activity(Label = "IslandMenu", Icon = "@drawable/icon", Theme = "@style/MainTheme", 
MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.
Orientation)]

The Label attribute needs to change. Replace the "IslandMenu" string with "@string/app_name". The 
@string token tells Android to look in the string resources and get the value for the string resource named 
app_name. The attribute should now look like this:

[Activity(Label = "@string/app_name", Icon = "@drawable/icon", Theme = "@style/MainTheme", 
MainLauncher = true, ConfigurationChanges = ConfigChanges.ScreenSize | ConfigChanges.
Orientation)]

After making that change, rebuild the IslandMenu.Droid project. If you have a device or emulator 
running in one of the languages that the the IslandMenu app now supports, when you run the app, you will 
see the text in the translated language.



Chapter 4 ■ Island Menu Application

89

Figure 4-10.  Island Menu in Android launcher, English

The app should run just as it did before; the difference is the way the app appears on the Android 
launcher. Before localizing the Label of the MainActivity, the name of the app would always appear as 
Island Menu (see Figure 4-10).



Chapter 4 ■ Island Menu Application

90

Figure 4-11.  Island Menu in Android launcher, Spanish

After making that change, the name of the app will now be displayed with the translated name in the 
Android Launcher as shown in Figure 4-11.



Chapter 4 ■ Island Menu Application

91

iOS

With iOS, the localization is handled a little differently. There are predefined string names in iOS for items 
such as the app title. You need to set the localized value for CFBundleDisplayName, which is a predefined 
variable name used by iOS and macOS to define the display name of your app. It's used on the home screen, 
in the Settings app, and also by Siri.

Select the IslandMenu.iOS project. Select the Resources folder and add the following folders: de.lproj, 
es.lproj, and zh.lproj. In each of the lproj folders, add a text file named InfoPlist.string.

Select the es.lproj folder and add the InfoPlist.string text file. Open the file and put in the following text:

"CFBundleDisplayName" = "Menú Isla";

Do the same process for the other lproj folders; it localizes the name of the app as it is displayed on the 
iOS Springboard launcher.

Figure 4-12.  Island Menu in Android Recent Apps List, Spanish

It also appears in the recent app list with the localized name, as shown in Figure 4-12.



Chapter 4 ■ Island Menu Application

92

Windows UWP

With UWP applications, you localize the name and the description of the app. The structure is similar to the 
way Android and iOS handle their string resources. Because this is an UWP app, you have to use the .resw 
resource format instead of the .resx format.

■■ Note   Starting with Windows 8 Store Apps, Microsoft changed the way localized resources were bundled 
with the application. With that change, the .resw file extension was introduced. The .resw file format is 
identical to the .resx format, except that it stores only strings and file paths.

Select the IslandMenu.UWP app, right-click the project, and add a folder named Strings. Create the 
following folders inside the Strings folder: de, en-US, es, and zh-Hans.

In the en-US folder, right-click the folder; select Add and then New Item. Select the Resources File 
(.resw) template and use the default name Resources.resw. It should look like Figure 4-13.

Figure 4-13.  Creating a new .resw file

www.allitebooks.com

http://www.allitebooks.org


Chapter 4 ■ Island Menu Application

93

Figure 4-15.  Resources.resw for Windows 10 UWP in Spanish

Figure 4-14.  Resources.resw for Windows 10 UWP in English

Press Add to add the resource file. After the file is created, double-click the file to edit it. The resource 
editor displays, which looks like the same editor that you used on the .resx files.

Add two string resources and name them "AppName" and "AppDescription". Use the same values from 
the .resx file in the PCL project. The end result should look like Figure 4-14.

Next, add Resources.resw files for the de, es, and zh-Hans folders. Use the same "AppName" and 
"AppDescription" strings and copy the values from the .resx files for each language in the PCL project. For 
example, the Resources.resx file in the es folder should look like Figure 4-15.

Now that the fields are localized, you need to update the app manifest to use the values from the 
resource files. Right-click the project file and select Properties. When the Properties page opens up, select 
the Application tab on the left side, and then press the Package Manifest button. A file named Package.
appxmanifest opens.

On the Application tab, set the value of the Display Name field to ms-resource:AppName and change 
the value of the Description field to ms-Resource:AppDescription. The manifest page should look like 
Figure 4-16.



Chapter 4 ■ Island Menu Application

94

Now you can compile and run the app. If you have a Windows 10 emulator set up for Spanish, the name 
should now show up translated. If you right-swipe in the emulator to bring up the app list, the name should 
be right at the top and look like Figure 4-17.

Figure 4-16.  Resources.resw referenced in the Windows 10 UWP app manifest



Chapter 4 ■ Island Menu Application

95

Wrapping Up
You just built a simple app from scratch, and it wasn't that hard to set it up to support multiple languages. 
Even though the app was compiled for three wildly different OSs, almost all the code was in a shared PCL.

The only code that was platform specific was the code to handle displaying the app name correctly on 
each platform. Everything else came from a single set of shared resources.

■■ Note   Always do a spot check of your application with a language that is different from your default 
language. Text that was not translated or localized is very apparent and it makes it very easy to find any part of 
the app that didn't get fully localized.

Figure 4-17.  Viewing the localized app name on Windows 10 UWP



97© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3_5

CHAPTER 5

Additional Resources

“County library? Reference desk, please. Hello? Yes, I need a word definition. Well, that's 
the problem. I don't know how to spell it and I'm not allowed to say it. Could you just rattle 
off all the swear words you know and I'll stop you when . . . Hello?”

—Bill Watterson, "Calvin and Hobbes"

About Xamarin.Forms
To write the sample app in Chapter 4, you used Xamarin.Forms to write code that is shared across the 
multiple platforms. Xamarin.Forms is a product from Xamarin, a subsidiary of Microsoft.

Xamarin is a company that ported the Microsoft .NET Framework to iOS and Android. It enables you to 
write fast, native applications in the C# and F# languages. Although the UI code for each platform is specific 
to each platform, the business logic of the app can be shared across platforms. Microsoft acquired Xamarin 
in 2016, and it is now part of the Microsoft Visual Studio development tools.

If you do not already own a copy of Visual Studio 2015, Microsoft has a free version for students, open-
source development teams, and individual developers. This version, the Community edition, includes the 
Xamarin tools. It can be downloaded from www.visualstudio.com/downloads/.

Xamarin.Forms is a library that lets you write code to run on Android, iOS, and Windows with shared 
UI code. It provides an abstraction layer for the UI. Instead of using the native UI controls directly, you 
reference the Xamarin.Forms version of the controls. At runtime, the native controls are used. To learn more 
about Xamarin.Forms, please see the online documentation provided by Xamarin at https://developer.
xamarin.com/guides/xamarin-forms/.

If you prefer to use Xamarin.Android, Xamarin.iOS, or UWP for Windows, most of this book still applies. 
Instead of a set of .resx files in the shared library, you can still create the platform native string resource file 
for your default language. For Android, it is the Strings.xml file in the Resource/values folder. For iOS, you 
have the Localizable.strings file in the Resources/Base.lproj folder. For UWP, you create the default .resw 
file in the Strings/en-US folder.

Once you have the platform-specific resource files working for your default language, you can enable 
the Multilingual App Toolkit (MAT) for each platform. You can then add the languages; that process 
creates the XLF files in each project. Once you translate the XLF, either through machine translation or by a 
professional, the MAT creates the native files for each platform.

Going full native instead of using Xamarin.Forms works just fine with the MAT, but you have multiple 
sets of XLF files to manage. You do have the option of using a shared PCL with the native Xamarin.Android, 
Xamarin.iOS, and UWP projects, which enables you to have a single source for the strings.

If you use a cross-platform MVVM library such as Mvvm Light (www.mvvmlight.net/), Prism (https://
github.com/PrismLibrary/Prism), or MvvmCross (https://mvvmcross.com/), you can share most of the UI 
code across the platforms and make good use of the shared .resx files.

http://dx.doi.org/10.1007/978-1-4842-2466-3_4
http://www.visualstudio.com/downloads/
https://developer.xamarin.com/guides/xamarin-forms/
https://developer.xamarin.com/guides/xamarin-forms/
http://www.mvvmlight.net/
https://github.com/PrismLibrary/Prism
https://github.com/PrismLibrary/Prism
https://mvvmcross.com/


Chapter 5 ■ Additional Resources

98

Emulators
When debugging and testing your app, you should use emulators as much as possible. Using mobile device 
emulators lets you run on more device sizes than you could ever possibly own. You can also pick and choose 
which OS versions to test on.

■■ Note S trictly speaking, the iOS emulator isn’t actually an emulator, it’s a simulator. An emulator works by 
emulating the behavior of the device. An emulated device runs the actual mobile OS and apps as if they were on 
a real device. The hardware of the device is emulated, but appears to be (and behaves as if) it is real. The iOS 
simulator provides a simulated view of the operating, but does not actually emulate the device hardware. This is 
why you can download apps from Google Play into an Android emulator, but you can’t download apps from the 
iTunes App store into the iOS Simulator.

Another advantage of using an emulator: you can easily change the language and region for a device 
and not have to worry about knowing the language enough to change it back to the default. You can also run 
multiple Android emulators side by side and have them in different languages and regions. It’s a good way to 
check your app for fit and finish issues when working with translated languages.

With Visual Studio 2015, you have the option of installing the Visual Studio Emulator for Android. You 
can also install the emulator by downloading it from www.visualstudio.com/vs/msft-android-emulator/.

Locale
The standard code for languages is the ISO 639 set of standards. You’ll typically use the ISO 639-1 set of 
codes, each of which has two characters. A second set of three-character codes for languages is defined as 
ISO 639-2.

Some languages do not have a two-character ISO 639-1 code; they have the three-character ISO 639-2 
code instead. For those languages, use the ISO 639-2 code. For example, suppose that you are doing apps 
localized to use Native American languages such as Cherokee or Cheyenne. They do not have ISO 639-1 
codes, but have ISO 639-1 codes, so you use "chr" and "chy" (respectively) for the two languages.

■■ Note   To see a full list of ISO 639 codes, access the Wikipedia article "List of ISO 639-2 Codes" located at 
https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes.

Country codes are defined as part of the ISO 3166 standard. The two-character codes used to represent 
country or region in the locale string are defined as ISO 639-2. A list of ISO 3166-2 codes can be found in the 
Wikipedia article “ISO 3166-2,” which can be accessed at https://en.wikipedia.org/wiki/ISO_3166-2.

Currency
Although this book did not provide a sample of using a currency rate exchange, there are both free and 
commercial services that can be accessed from a mobile app. Table 5-1 shows selected free and commercial 
sites that offer "forex" exchange services.

http://www.visualstudio.com/vs/msft-android-emulator/
https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes
https://en.wikipedia.org/wiki/ISO_3166-2


Chapter 5 ■ Additional Resources

99

When converting currency, let the user know that the conversion rate is an approximate value. The actual 
conversion rate they get when they exchange their money will be different and might include some fees.

The European Central Bank has a page that has foreign exchange rates against the euro. The page is 
updated once per day and can be found at www.ecb.europa.eu/stats/exchange/eurofxref/html/index.
en.html. There is an XML version of the page that contains just the reference rates; access it at www.ecb.
europa.eu/stats/eurofxref/eurofxref-daily.xml. A recent download of the daily rate looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<gesmes:Envelope xmlns:gesmes="http://www.gesmes.org/xml/2002-08-01" xmlns="http://www.ecb.
int/vocabulary/2002-08-01/eurofxref">
        <gesmes:subject>Reference rates</gesmes:subject>
        <gesmes:Sender>
                <gesmes:name>European Central Bank</gesmes:name>
        </gesmes:Sender>
        <Cube>
                <Cube time='2016-09-30'>
                        <Cube currency='USD' rate='1.1161'/>
                        <Cube currency='JPY' rate='113.09'/>
                        <Cube currency='BGN' rate='1.9558'/>
                        <Cube currency='CZK' rate='27.021'/>
                        <Cube currency='DKK' rate='7.4513'/>
                        <Cube currency='GBP' rate='0.86103'/>
                        <Cube currency='HUF' rate='309.79'/>
                        <Cube currency='PLN' rate='4.3192'/>
                        <Cube currency='RON' rate='4.4537'/>
                        <Cube currency='SEK' rate='9.6210'/>
                        <Cube currency='CHF' rate='1.0876'/>
                        <Cube currency='NOK' rate='8.9865'/>
                        <Cube currency='HRK' rate='7.5220'/>
                        <Cube currency='RUB' rate='70.5140'/>
                        <Cube currency='TRY' rate='3.3576'/>
                        <Cube currency='AUD' rate='1.4657'/>
                        <Cube currency='BRL' rate='3.6210'/>
                        <Cube currency='CAD' rate='1.4690'/>
                        <Cube currency='CNY' rate='7.4463'/>
                        <Cube currency='HKD' rate='8.6547'/>
                        <Cube currency='IDR' rate='14566.22'/>
                        <Cube currency='ILS' rate='4.1996'/>

Table 5-1.  List of Selected ForEx Services

Name License URL

European Central Bank Free https://www.ecb.europa.eu/stats/exchange/eurofxref/
html/index.en.html

Forcefeed.net Paid http://forexfeed.net/forex-data-services

OANDA Paid https://www.oanda.com

Open Exchange Rate Free/Paid https://openexchangerates.org

Xignite Paid http://www.xignite.com/forex

https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
https://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml
http://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml
http://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html
http://www.ecb.europa.eu/stats/exchange/eurofxref/html/index.en.html


Chapter 5 ■ Additional Resources

100

                        <Cube currency='INR' rate='74.3655'/>
                        <Cube currency='KRW' rate='1229.76'/>
                        <Cube currency='MXN' rate='21.7389'/>
                        <Cube currency='MYR' rate='4.6148'/>
                        <Cube currency='NZD' rate='1.5369'/>
                        <Cube currency='PHP' rate='54.015'/>
                        <Cube currency='SGD' rate='1.5235'/>
                        <Cube currency='THB' rate='38.695'/>
                        <Cube currency='ZAR' rate='15.5238'/>
                </Cube>
        </Cube>
</gesmes:Envelope> 

Based on that document, if you want to display 50 euros in Chinese yuan, do the following:

	 1.	 Request the current rates by downloading the XML document.

	 2.	 Get the euro–to-yuan exchange rate by searching on the three-letter code for 
Chinese yuan (CNY). For this download, that rate is 7.4463.

	 3.	 Multiple the 50 euros by that rate to get a value of 372.32 yuan.

To convert from U.S. dollars to Chinese yuan, multiply the dollar value by the euro-to-yuan rate and 
then divide that result by the euro-to-dollar rate. You have to display the correct currency symbols.

Pluralization
Although your best option is to use a layout that avoids pluralization rules, you may sometimes have to 
pluralize some of your text. A good reference that lists the different plural rules by language is maintained by 
the Mozilla project in its developer documentation. This page, "Localization and Plurals," can be accessed at 
https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_and_Plurals.

The Mozilla reference defines 16 rules. For example, rule #2 as defined by Mozilla has two forms and 
applies to French and Brazilian Portuguese. Form 1 applies to the quantities 0 or 1; form 2 is for everything else.

For those two languages, you need two resource strings. For example, suppose that you want to display 
a message when one or more files are uploaded. For French, you can use the the following for forms 1 and 2:

"{0} fichier téléchargé"
"{0} fichiers téléchargés"

Most of the other European languages use plural rule #1, which also has two rules. Form 1 applies to the 
quantity 1; form 2 is for everything else. For Spanish, you can define the following two resource strings for 
the forms:

"{0} archivo subido"
"{0} archivos subidos"

If you had a resource file named MyResource, you could have resource strings named "Upload1" and 
"Upload2" that have the strings that would be correct for form 1 and form 2. If you supported languages that 
had more forms, you would define strings for each one. You would have one more resource string called 
"PluralRule". Set that string to the rule number for that language. For MyResource.es.rex, the value of 
"PluralRule" would be 1.

https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_and_Plurals


Chapter 5 ■ Additional Resources

101

Create a descendant class of MyResource and call it MyResourceHelper. You can add public methods to 
return the correct plural string and add some private methods to make the work easier and reusable. You can 
add that class to the same namespace as the MyResource class, which looks something like this:

public class MyResourceHelper : MyResource
{
        public static string GetPluralForUpload(int quantity)
        {
                var form = GetFormForQuantity(quantity);
                var tmp = ResourceManager.GetString($"Upload{form}", MyResource.Culture);
                return String.Format(tmp, quantity);
        }

        public static int GetFormForQuantity(int quantity)
        {
                var rule = Convert.ToInt32(MyResource.PluralRule);

                // default form for every rule, for rule 0 it's the only form
                var form = 1;

                switch (rule)
                {
                        case 1:
                                if (quantity != 1)
                                        form = 2;
                                break;
                        case 2:
                                if (quantity > 1)
                                        form = 2;
                                break;
                        case 3:
                                if (quantity == 0)
                                {
                                        form = 1;
                                }
                                else if (EndsWithN(quantity, 1) && (quantity != 11))
                                {
                                        form = 2;
                                }
                                else
                                        form = 3;
                                break;
                        // define other rules & forms
                }

                return form;
        }
        private static bool EndsWithN(int value, int EndNum)
        {
                return (value % 10 == EndNum);
        }
}



Chapter 5 ■ Additional Resources

102

Use this helper by calling it like this, where n is the quantity that you need to pluralize:

var someString = MyResourceHelper.GetPluralForUpload(n);

The GetFormForQuantity() method takes the quantity and checks to see which PluralRule applies to 
the current language. Then it just uses a simple set of rules to see which form is needed.

Once you have the form number, you can make a string with the form number to match the resource 
strings that have been defined. You then call the ResourceManager.GetString() method with the resource 
string name that was just constructed and the current culture, which comes from the resource class.

The parameterized string (such as "{0} archivo subido") is returned and then passed to String.
Format() with the quantity. The return value is the localized string with the correct plural format.

It's a little complicated to set up, but once you have it in place, it is easy to create additional plural 
strings.

Vernacular
Long-time Xamarin users have had another option for localization. Software team members at Rdio created 
their own localization tools under the name Vernacular. They provide command-line tools to parse the 
source code and generate .pot files. You then send the .pot files to a translation service and get back .po 
files, one for each supported language. The command-line tool then takes the .po file and generates the 
platform-specific string resource files.

POT, which stands for portable object template, contains the strings to be translated, where the string 
appears in the code, and hint information. The hint information provides context to the translator. PO, which 
stands for portable object, is the translated version of the POT file, with one .po file for each of the languages 
being translated to. Although the POT and PO files sound like they might be different formats, they do use 
the same format.

Vernacular provides an API inspired by gettext and has support for both pluralization and genders. The 
gettext library was originally developed by Sun Microsystems to handle localization in Unix applications. 
GNU gettext is an open-source version that was released in 1995.

With gettext, the .po files are compiled to a binary file with either an .mo or .gmo (GNU gettext) 
extension. The gettext() function takes a string token and replaces it with the translated version from the 
.mo file.

Vernacular uses the platform string resource files instead of the .mo files. The same command-line tool 
that generates the .pot file from the source code is also used to generate the resource files from the .po files. 
In Vernacular terminology, this step is called the Merge step.

The workflow flows roughly like this. The first step is called the Extract step. You run the Vernacular 
command-line executable against the input files and create the .pot file. A sample run can look like this:

$ vernacular        \
        --output=project.pot \
        --input=bin/Debug \
        --input=Resources/Values/strings.xml \
        --source-root=$PWD \
        --generator=po \
        --pot \
        --meta="Project-Id-Version=Sample Project" \
        --meta="POT-Creation-Date=$(date '+%Y-%m-%d        %H:%M%z')" \
        --analyze \
        --analyzer-config=vernacular-analyzer.xml



Chapter 5 ■ Additional Resources

103

For ease of formatting, use this syntax in a Mac terminal session. It generates a .pot file named 
project.pot and uses the compiled debug assemblies for the app and the default strings.xml file. Once 
you have the .pot file, you can edit it and add comments where appropriate.

Send the .pot file out to be translated and get back a set of .po files, one for each language that was 
translated. (This example assumes that the translation people added the language code to the file name.) 
Then run the Vernacular command as the Merge step. To generate the French language resource file on iOS, 
run the command like this:

$ vernacular \
        --output=fr.lproj/Localizable.strings \
        --input=project_FR.po \
        --generator=ios

You have to run it for each language and for each platform. Ideally, you script these steps with MSBuild.
Use Vernacular.Catalog as the API for localizing the strings in code. Using the "files downloaded" 

example from the previous section, you could have a .pot file named project.pot that includes the 
following entries:

#. TRANSLATORS: This describes the number of files to be uploaded msgid "{0} file 
downloaded"
msgstr ""

msgid "{0} files downloaded"
msgstr ""

The French translation, named project-fr.po, includes the following:

#. TRANSLATORS: This describes the number of files to be uploaded
msgid "{0} file downloaded"
msgstr "{0} fichier téléchargé"

msgid "{0} files downloaded"
msgstr "{0} fichiers téléchargés"

Using the "files downloaded" example from the previous section, the Vernacular code looks like this:

var labelString = Catalog.GetPluralString(
    "{0} file downloaded",
    "{0} files downloaded",
    filecount);

There are some advantages to using Vernacular. It has support for plurals and genders, and has the 
tooling to make it a cross-platform solution. With gettext being around since 1995, it's a well-known tool, and 
translation companies are very familiar with it.

There are some potential disadvantages. Vernacular has a very nice API and tooling, but it was 
developed by a company that unfortunately went out of business. Documentation is scarce, and you need to 
understand how the command-line tools work in order to build your applications.

Vernacular is an open-source project hosted on Github at https://github.com/rdio/vernacular.

https://github.com/rdio/vernacular


Chapter 5 ■ Additional Resources

104

XLIFF
Professional translation services can work with a file format called XLIFF, which stands for XML Localization 
Interchange File Format. It was created to provide a standard file format for localization conversion tools. 
The MAT uses XLIFF as a storage format. The MAT provides enough functionality with its editor; you should 
never have to edit the XLIFF files manually. If you send the XLIFF files out to be translated, you should be 
able to replace the existing files in your project with the updated files. 

An XLIFF file typically uses an .xlf file extension and is based on XML. It’s designed to be used by 
translation tools and is not very human readable. In addition to storing the translated text, the XLIFF file 
allows you to store the state of a translation. When an item of text is translated, an attribute named state can 
be associated with the text translation. You can flag text items as new, translated, translated but needs 
review, signed off, and a few other states.

A well-defined XML format allows tools from different suppliers to read and write to the same format. 
Different tools can add their own extensions, and those extensions are relevant only to that tool. Other tools 
skip over extensions that they don’t recognize.

As defined in the OASIS XLIFF Core Spec (http://docs.oasis-open.org/xliff/xliff-core/xliff-
core.html), the predefined values for states (http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.
html#state) are defined in Table 5-2.

Table 5-2.  XLIFF 1.2 States

Value Description

final Indicates the terminating state.

needs-adaptation Indicates that only nontextual information needs adaptation.

needs-l10n Indicates that both text and nontextual information needs adaptation.

needs-review-adaptation Indicates that only nontextual information needs review.

needs-review-l10n Indicates that both text and nontextual information needs review.

needs-review-translation Indicates that only the text of the item needs review.

needs-translation Indicates that the item needs to be translated.

new Indicates that the item is new (for example, a translation unit that wasn’t 
in a previous version of the document).

signed-off Indicates that changes are reviewed and approved.

translated Indicates that the item has been translated.

Additional values can be defined by XLIFF tool vendors. The value names for vendor-specific items start 
with x-. The version of MAT current at the time of this writing ignores custom values.

The state attribute lets you manage the translation process for each item, which allows you to add or 
edit a new string and send the XLIFF out to be translated. When the file comes back, check all the items with 
the state needs-review-translation. Change the state from review to translated or final, depending on 
your development process.

Although there are 11 predefined values, you usually need to use only 3 or 4 of them (new, needs-
review-translation, translated, final). In the end-user application, these states typically appear as New, 
Review, Translated, and Final.

http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/xliff-core/xliff-core.html
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#state
http://docs.oasis-open.org/xliff/v1.2/os/xliff-core.html#state


Chapter 5 ■ Additional Resources

105

How you use the state attribute depends on your own workflow. If someone creates the XLIFF from the 
source code resources, the status is set to new for all new string values to be translated. It is then easier to see 
what needs to be done and to eliminate having to translate the same text more than once. When paying to 
have text translated, you typically pay by the word. You don’t want to send over the same text to be translated 
over and over again.

The review status lets a subject domain expert review the translated text before approving it. The 
context of text is very important. A section of text translated from one language to another may be 
syntactically correct, but it might have the wrong meaning in the context of its use.

For example, the word hood in United States English and Great Britain English can refer to the part of 
a jacket that covers your head. In the context of a clothing application, hood is the same for both versions 
of English. If the app was is an automotive app, in United States English, the hood is the part of the car that 
covers the engine bay. In Great Britain English, that part of a car is referred to as a bonnet.

So you need to be very careful when using machine translation. On Google’s translation page (https://
translate.google.com), the default translation for hood is for the term that describes a head covering. 
When you use Google to translate hood from English to Spanish, the first match is for capucha, the clothing 
definition (see Figure 5-1).

Figure 5-1.  Google Translate, English to Spanish

As soon as you add some context by asking Google to translate the hood of the car, the translation 
becomes el capó del coche, using the automotive contextual version of hood.

https://translate.google.com/
https://translate.google.com/


Chapter 5 ■ Additional Resources

106

If you are using XLIFF files, you need a way to edit the files and convert them to a format that your 
development tools can work with. These tools enable you to edit, import, and export the files.

The code examples in this book use the MAT from Microsoft, which generates XLIFF files from resource 
files. Table 5-3 shows some sample items defined in a resource file.

Table 5-3.  Sample RESX Values

Name Value Comment

AppDescription Providing menus to the best of the restaurants One-line description of the app

AppTitle Island Menu Title of the app as it should appear 
on the device

Welcome Welcome Simple salutation

Figure 5-2.  Google Translate, English to Spanish

The XLIFF file for the Spanish translation starts out looking like this:

<?xml version="1.0" encoding="utf-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2 
xliff-core-1.2-transitional.xsd">
  <file� datatype="xml" source-language="en" target-language="es" original="ISLANDMENUXF/

RESOURCES/APPMAIN.RESX" tool-id="MultilingualAppToolkit" product-name="n/a" product-
version="n/a" build-num="n/a">

    <header>
      <tool� tool-id="MultilingualAppToolkit" tool-name="Multilingual App Toolkit" tool-

version="4.0.1605.0" tool-company="Microsoft" />
    </header>
    <body>
      <group id="ISLANDMENUXF/RESOURCES/APPMAIN.RESX" datatype="resx">
        <trans-unit id="AppDescription" translate="yes" xml:space="preserve">
          <source>Providing menus to the best of the restaurants</source>
          <target state="new">Providing menus to the best of the restaurants</target>
          <note� from="MultilingualBuild" annotates="source" priority="2">The one line 

description of the app</note>
        </trans-unit>
        <trans-unit id="AppTitle" translate="yes" xml:space="preserve">
          <source>Island Menu</source>
          <target state="new">Island Menu</target>



Chapter 5 ■ Additional Resources

107

          <note� from="MultilingualBuild" annotates="source" priority="2">The title of the 
app as it should appear on the device</note>

        </trans-unit>
        <trans-unit id="Welcome" translate="yes" xml:space="preserve">
          <source>Welcome</source>
          <target state="new">Welcome</target>
          <note from="MultilingualBuild" annotates="source" priority="2">A simple salutation</note>
        </trans-unit>
      </group>
    </body>
  </file>
</xliff>

After the English language text runs through the machine translation provided by MAT, the XLIFF 
<target> elements are updated with the Spanish language equivalents, as shown here:

<?xml version="1.0" encoding="utf-8"?>
<xliff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2" xmlns:xsi="http://www.
w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xliff:document:1.2 
xliff-core-1.2-transitional.xsd">
  <fi�le datatype="xml" source-language="en" target-language="es" original="ISLANDMENUXF/

RESOURCES/APPMAIN.RESX" tool-id="MultilingualAppToolkit" product-name="n/a"  
product-version="n/a" build-num="n/a">

    <header>
      <tool� tool-id="MultilingualAppToolkit" tool-name="Multilingual App Toolkit"  

tool-version="4.0.1605.0" tool-company="Microsoft" />
    </header>
    <body>
      <group id="ISLANDMENUXF/RESOURCES/APPMAIN.RESX" datatype="resx">
        <trans-unit id="AppDescription" translate="yes" xml:space="preserve">
          <source>Providing menus to the best of the restaurants</source>
          <target state="needs-review-translation" state-qualifier="mt-suggestion">Proporcionar  
               menús al mejor de los restaurantes</target>
          <note� from="MultilingualBuild" annotates="source" priority="2">The one line 

description of the app</note>
        </trans-unit>
        <trans-unit id="AppTitle" translate="yes" xml:space="preserve">
          <source>Island Menu</source>
          <target state="needs-review-translation" state-qualifier="mt-suggestion">Menú isla</target>
          <note� from="MultilingualBuild" annotates="source" priority="2">The title of the 

app as it should appear on the device</note>
        </trans-unit>
        <trans-unit id="Welcome" translate="yes" xml:space="preserve">
          <source>Welcome</source>
          <target state="needs-review-translation" state-qualifier="tm-suggestion">Bienvenido</target>
          <note from="MultilingualBuild" annotates="source" priority="2">A simple salutation</note>
        </trans-unit>
      </group>
    </body>
  </file>
</xliff>



Chapter 5 ■ Additional Resources

108

If you look at the AppTitle string resource, the untranslated XLIFF looked like this:

<trans-unit id="AppTitle" translate="yes" xml:space="preserve">
  <source>Island Menu</source>
  <target state="new">Island Menu</target>
  <note from="MultilingualBuild" annotates="source" priority="2">The title of the app as it 
should appear on the device</note>
</trans-unit>

The source element is source language text, which in this example is Island Menu. The target element 
has the translated value. Because this text has not been translated, it has a default value of the original source 
value. It has the state attribute set to new, which signifies that it is a new text item to be translated. The note 
element brings in the comment from the resource file to provide context to the person doing the translation.

After the machine translation service completes, the target element for AppTitle now looks like this:

<target state="needs-review-translation" state-qualifier="mt-suggestion">Menú isla</target>

You can see three changes:

•	 The state has been changed to needs-review-translation, which is usually 
displayed as review.

•	 There is a new attribute, state-qualifier, which describes the state of a translated 
item, and there is a set of predefined values for state-qualifier (see Table 5-4).

•	 The value has been changed.

Table 5-4.  XLIFF 1.2 State-Qualifier

Value Description

exact-match Indicates an exact match, which occurs when a source text of a segment is 
exactly the same as the source text of a segment that was translated previously.

fuzzy-match Indicates a fuzzy match, which occurs when a source text of a segment is very 
similar to the source text of a segment that was translated previously (e.g., when 
the difference is casing, a few changed words, whitespace discrepancy, etc.).

id-match Indicates a match based on matching IDs (in addition to matching text).

leveraged-glossary Indicates a translation derived from a glossary.

leveraged-inherited Indicates a translation derived from existing translation.

leveraged-mt Indicates a translation derived from machine translation.

leveraged-repository Indicates a translation derived from a translation repository.

leveraged-tm Indicates a translation derived from a translation memory.

mt-suggestion Indicates that the translation is suggested by machine translation.

rejected-grammar Indicates that the item has been rejected because of incorrect grammar.

rejected-inaccurate Indicates that the item has been rejected because it is incorrect.

rejected-length Indicates that the item has been rejected because it is too long or too short.

rejected-spelling Indicates that the item has been rejected because of incorrect spelling.

tm-suggestion Indicates that the translation is suggested by translation memory.



Chapter 5 ■ Additional Resources

109

The state-qualifier has been set to mt-suggestion, which signals that it was machine generated. 
When the text is translated by a professional language expert, the state-qualifier may be set to id-match, 
exact-match, or fuzzy-match.

When the XLIFF comes back from translation and is being reviewed, the translated item can be 
rejected. In that case, the state-qualifier is set to one of the rejected-* values. For example, in a medical 
form, there is a field labelled Height. The Spanish translation is Estatura. Another definition for height can be 
for elevation. In Spanish, Altura can be used for elevation. If the translation service had supplied Altura for 
Height, the reviewer would set the state-qualifier to rejected-inaccurate.

Another way to use the state-qualifier is to reject translations that are too long for the display. 
When writing mobile apps, space is a premium. If a translated value doesn’t fit, the reviewer can set the 
state-qualifier to rejected-length. The comments of the source text should indicate that there is a 
space restriction.

The value of the target element contains the translated text. In this case, Island Menu came back as 
Menú Isla. It’s a literal translation, but it may not make grammatical sense in Spanish. You can accept it, 
reject it, or change it. In this case, change it to Menú de la Isla with the MAT editor. Once it’s been saved, the 
XLIFF for that item now looks like this:

<target state="translated">Menú de la Isla</target>

After final review, the reviewer sets the state as final, and the XLIFF looks like this:

<target state="translated">Menú de la Isla</target>



111

�       � A, B, C, D, E, F, G, H
Android XML, 27–28
Apple iOS String Dictionary, 28–30

�       � I, J, K
Internationalization, 1–2
Internet Engineering Task Force (IETF), 6
Island Menu app

architecture, 50
create, folders, 51–52
data access

DataServices, 58–59
GetClosestLanguage() method, 59
GetRestaurants() method, 60
JSON file, 60
.NET Framework, 60
view model, 61–62
web service method, 61
XAML markup extensions, 62

default constructor, 77
defining models, 52–54
DependencyService, 55
description, 49
ICultureInfo.cs, 56
ImageResourceConverter, 62–63
interface, 56
iOS development, 50
localization, 82–83
MAT (see Multilingual App Toolkit (MAT))
MenuList code-behind, 75–76
MenuListItem View, 73
MenuList View, 74–75
modular design, 66
Newtonsoft.Json package, 51
platform implementations, 56–58
platform Specifics

Android, 87–91
iOS, 91

Windows UWP, 92–95
wrapping up, 95

RestaurantItem View, 66–68
RestaurantList code-behind, 70–73
RestaurantList view, 69–70
running

First Chance Pizza, 79
Restaurant list on Android, 78
Restaurant list on iPhone, 80–81
Restaurant list on Windows Mobile, 10, 81
Windows 10 Desktop application, 82

services layer, 54–55
St. Brian restaurants, 49
styling, XAML markup, 64–66
TranslateExtension, 63–64
translations, 83
Visual Studio 50, 2015
Xamarin, 50–51

�       � L
Localization

Apple’s iOS App Store  
and Google Play, 2–5

definition, 2
Facebook, 9
global marketplace, 2
language and culture

Android resource, 7
application, 8
Brazilian and European Portuguese, 8
common locale strings, 7
English strings, 8
French, 8
ISO 3166 Alpha-2 List, 6–7
ISO 639-1 Language Codes, 6
script languages, 6
software development, 6
subtag, 6
variation of, 8

Index

© Christopher Miller 2017 
C. Miller, Cross-platform Localization for Native Mobile Apps with Xamarin,  
DOI 10.1007/978-1-4842-2466-3



■ INDEX

112

language string, 9
smartphone users, 5
support languages, 9–10
text translation

application framework, 10
app store material, 18
capitalization, 16
character sets, 10
context, 13
currency and numeric formatting, 13–15
dates and time, 15–16
grammatical genders, 11–12
images, 17
input validation, 18
layouts, 13
machine, 18
Microsoft and Google, 18
pluralization, 12
right-to-left (RTL) support, 12–13
sentence translation, 11
simplified Chinese, 10
sorting, 16–17
text resources, 10
workflows, 19

Twitter, 9

�       � M, N, O
Multilingual App Toolkit (MAT)

Add Translation Languages, 36–37
Blank Xaml App, 33–36
ChangeCulture(), 44
CultureOverride class, 41
data files, 83
development workflow, 41
enabling, 36
functionality, 31
ICultureOverride, 41
installation, 32–33
MainPageText.resx, 43
Microsoft Language Portal Provider, 38
Multilingual Editor, 40–41
MultilingualResources folder, 83
nondefault namespace, 42
PrimaryLanguageOverride, 43
Restaurant list

Chinese, 86–87
German, 85–86
Spanish, 84–85

.resx resource file, 33

sample app
Chinese, 47
default language, 44–45
screenshots, 47
Spanish, 46

SetCultureOverride(), 41–42
StackLayout, 36
State field, 40
string resource, 36
translated string resource, 40–41
translation languages, 38, 83
UWP version of CultureOverride.cs, 43
Windows Phone, 33
Xamarin.Android and Xamarin.iOS, 33
Xamarin.Forms DependencyService, 42–44
XLF files, 38–39

�       � P, Q
People’s Republic of China (PRC), 10

�       � R, S, T, U, V, W
Resource files

Android XML, 27–28
Apple iOS string dictionary, 28–30
currency, 98–100
description, 21
emulators, 98
locale, 98
pluralization, 100–102
RESX (see RESX file)
vernacular, 102–103
Xamarin.Forms, 97
XLIFF (see XML Localization Interchange  

File Format (XLIFF))
RESX file

Access Modifier property, 24
add, New Item, 22
compile time validation, 25
.designer.cs, 21, 24
editing, 23
EyeColor string, 24, 26
language and country, file names, 25
objects and strings, XML tags, 21
Portuguese language, 25
resource name, 21
resources file template, 22–23
Spanish translations, 26
string resource, 25



■ INDEX

113

string values, 24
table structure, 21
translated strings, Spanish, 25

�       � X, Y, Z
XML Localization Interchange  

File Format (XLIFF)
AppTitle string resource, 108
description, 104
English language, 107

Google’s translation page, 105–106
hood, 105
Island Menu, 109
predefined values, 104
review status, 105
sample RESX values, 106
Spanish translation, 106–107
state attribute, 104
state-qualifier, 108–109
translation process, 104
translation tools, 104


	Contents at a Glance
	Contents
	About the Author
	Acknowledgments
	Chapter 1: What Is Localization?
	What Is Localization, and Why Should You Pay for it?
	Internationalization
	Localization

	Why Do You Want to Do This?
	Global Marketplace
	Let’s Talk About the Numbers
	Other Reasons for Localizing an App

	Identifying Language and Culture
	Where Does the Language String Come From?
	Other Things to Consider
	Which Languages Do You Need to Support?

	What’s Involved with Translation?
	Translate Sentences, Not Words
	Dealing with Grammatical Genders
	Pluralization

	Right-To-Left support
	Layout Considerations
	Context Is King
	Currency and Numeric Formatting
	Dates and Time
	Capitalization
	Sorting
	Images
	Input Validation
	App Store Material

	How to Get Your Text Translated

	Chapter 2: Working with Resource Files
	About File Formats
	RESX
	Android XML
	Apple iOS String Dictionary


	Chapter 3: Working with Multilingual App Toolkit
	Multilingual App Toolkit
	Installation
	Using the MAT


	Chapter 4: Island Menu Application
	About the App
	App Architecture
	Supplying Data to the App

	Building the Island Menu App
	Create the Folders
	Define the Models
	Services Layer
	Using the DependencyService
	Defining the Interface
	Platform Implementations
	Data Access

	View Model
	XAML Markup Extensions
	ImageResourceConverter
	TranslateExtension

	Adding the Views
	Define Some Style
	Using a Modular Design
	RestaurantItem View
	RestaurantList view
	RestaurantList code-behind
	MenuListItem View
	MenuList View
	MenuList Code-behind
	Wiring Up the View

	Running the Code
	Localizing the App
	Using the MAT
	Platform Specifics
	Android
	iOS
	Windows UWP


	Wrapping Up


	Chapter 5: Additional Resources
	About Xamarin.Forms
	Emulators
	Locale
	Currency
	Pluralization
	Vernacular
	XLIFF

	Index



